

Database security

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you agree that
this license grants permission to use the contents contained herein, but does not give
you the right of ownership to any of the textual content in the book or ownership to
any of the information, files, or products contained in it. This license does not per-
mit uploading of the Work onto the Internet or on a network (of any kind) without
the written consent of the Publisher. Duplication or dissemination of any text, code,
simulations, images, etc. contained herein is limited to and subject to licensing terms
for the respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion of the
textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and any-
one involved in the creation, writing, production, accompanying algorithms, code,
or computer programs (“the software”), and any accompanying Web site or soft-
ware of the Work, cannot and do not warrant the performance or results that might
be obtained by using the contents of the Work. The author, developers, and the
Publisher have used their best efforts to ensure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no
warranty of any kind, express or implied, regarding the performance of these con-
tents or programs. The Work is sold “as is” without warranty (except for defective
materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.
The data used throughout this text, including names of persons and companies are
for instructional purposes only. They have been researched with care but are not
guaranteed for any intent beyond their educational purpose.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

Companion files are available for download from the publisher by writing to
info@merclearning.com.

mailto:info@merclearning.com

Database security
Problems and Solutions

Christopher Diaz, Ph.D.

Mercury Learning anD Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2022 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

C. Diaz. Database Security.
ISBN: 978-1-68392-663-4

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this book
are trademarks or service marks of their respective companies. Any omission or misuse (of any kind)
of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022940435
222324321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
The sole obligation of Mercury Learning and Information to the purchaser is to replace
the book, based on defective materials or faulty workmanship, but not based on the operation or
functionality of the product.

mailto:info@merclearning.com
http://www.merclearning.com
http://academiccourseware.com

I thank my wife Sindy, who assisted with developing case studies,
as well as my family for inspiration and support.

Contents

Dedication v
Preface xi

CHAPTER 1: Introduction to Information Security, Data Security,
and Database Security 1

1.1 Information Security 2
Confidentiality 2
Integrity 2
Availability 3

1.2 Security Threats, Controls, and Requirements 4
Security threats 4
Security controls 5
Security requirements 5

1.3 Data Security 6
1.4 Database Security 7

Data confidentiality 7
Data integrity 8
Data Availability 14

1.5 Summary 15

CHAPTER 2: Database Design 17
2.1 Normalization 18
2.2 Surrogate Keys and Data Integrity 24
2.3 Normalization, Access Restrictions, and Beyond 27
2.4 Summary 29

CHAPTER 3: Database Management and Administration 31
3.1 Backup and Recovery 32

Backup and restore of a specific database 33

viii • Contents

Backup and restore of multiple specific databases 36
Backup and restore of specific tables 36
Backup of users, privileges, and other components 38
Deciding what to backup 39

3.2 User Account Security Configurations 40
Password expiration 40
Disabling/enabling user accounts 45

3.3 Summary 46

CHAPTER 4: Database User Accounts 47
4.1. Creating and Removing Database User Accounts 48
4.2. Listing User Accounts 53
4.3 Host-Restricted Accounts 54
4.4 Summary 58

CHAPTER 5: Database Privileges 59
5.1 Overview of Privileges and Database-Level Privileges 61
5.2 Capability to Manage Privileges 66
5.3 Listing Privileges 67
5.4 Removing Privileges 70
5.5 Working with TLS and Table-Level Privileges 73
5.6 TLS and Normalization Revisited 83
5.7 Column Level Security (CLS) 89
5.8 CLS and Evolving Data Access Requirements and Data 98

The capability for CEO and CFO to read salary data 99
The capability for employees to see address data 100
 The capability for executives to keep private notes in the
budget table 101

5.9 Row Level Security 104
5.10 Summary 104

CHAPTER 6: Roles 105
6.1 Defining Role Members and Data Access Requirements 106
6.2 Creating a Database Role, Showing Role Privileges, and

Removing a Role 111
6.3 Assigning Privileges to Roles 113
6.4 Database Users and Role 118

Adding and removing a database user to a role 119
Listing, setting, and testing a user’s role 121
The default role 125
Listing privileges and roles revisited 127

Contents • ix

6.5 Roles and Evolution 131
A new employee is hired 131
An employee adds a role or moves to another role 133
An employee leaves a role or the organization 134

6.6 Summary 135

CHAPTER 7: Database Security Controls for Confidentiality 137
7.1 Views 137

Concept of a view 137
Creating a view 139
Showing a list of views and a view definition 141
Accessing the data of a view 142
Security considerations of a view 144
Deleting and redefining views 148
Views and multiple data access requirements 150

7.2 Encryption, Decryption, and Hashing 153
Encryption 154
Decryption 155
Hashing 156
Salting 162

7.3 Stored Routines 167
Stored functions 169
Stored procedures 173
Revisiting the password authentication implementation 175

7.4 Summary 177

CHAPTER 8: Transactions for Data Integrity 179
8.1 Commits, Rollbacks, and Automatic Commits 180
8.2 Beginning a Transaction with COMMIT or ROLLBACK 183
8.3 Beginning a Transaction with START TRANSACTION 186
8.4 Condition Issued COMMIT or ROLLBACK 190
8.5 Exception Issued ROLLBACK 192
8.6 A Larger Demonstration of Transactions 197
8.7 Summary 206

CHAPTER 9: Data Integrity with Concurrent Access 207
9.1 Concurrent Access and Backups 207
9.2 Concurrent Access with DML Statements 212

Table-level locking 217

x • Contents

Row-level locking 223
UPDATE locks 224
SHARE locks 227

9.3 Deadlock 231
9.4 Summary 234

Appendix 235
Index 245

PrefaCe

After authoring my first textbook, An Introduction to UNIX/Linux, I later
wanted to author another textbook. I considered a follow-up to that same topic,
but realized a different topic had a larger void and greater need: Database
Security. The idea of authoring a textbook in the field of database security
arose with the rising trends of data science the past few years, the plethora of
digital information that is created and used each day, and the ongoing needs
for information security. While there are a few good database security text-
books that exist, many of those were written 10 to 20 years ago, so I believed
it was time for a fresh look at this important topic.

Database security and information security may sound like similar concepts,
but they are different in perspective and coverage. Database security does
involve the information security principles of confidentiality, integrity, and
availability. However, database security considers and implements those secu-
rity measures or controls in more specific ways than are generally realized
in the broader realm of information security. For example, to uphold the
principle of confidentiality, we often turn to the information security con-
trol of encryption. But database security also involves other confidentiality
approaches, such as techniques for account credential management, tech-
niques to manage access to data, as well as techniques to manage the types
of access. These are among the topics that we cover in Chapters 1, 3, 4, 5, 6,
and 7.

To uphold the principle of integrity, we often consider the information secu-
rity controls of hashing or digital signatures. With database security, in addi-
tion to those techniques we must also consider other, less realized, approaches
such as database normalization, referential integrity, transactions, locks, and

xii • Preface

check constraints, all of which are some of the topics we cover in Chapters 1,
2, 7, 8, and 9.

Last but not least, to uphold the principle of availability we likewise discuss a
variety of approaches in Chapters 1, 3, and 9.

The audiences for this textbook include professionals and self-learners, as
well as classroom or workshop settings. The concepts presented in the text
are demonstrated against databases that are provided, so that one can follow
along in a hands-on approach and better learn these concepts. Each chapter
also has a set of questions and follow up projects that one can use to reinforce
their understanding of the material.

This textbook is not meant to be a complete reference of database security
concepts and techniques, but rather focuses on the more typical ones. In addi-
tion, in this text we focus on DBMS considerations, and not database applica-
tion considerations (such as SQL injection), which itself can involve enough
content for its own textbook. With this background, the reader can expand on
these concepts as necessary with various print and online resources.

C H A P T E R 1
IntroduCtIon to InformatIon
seCurIty, data seCurIty, and
database seCurIty

Security is a vital need in many facets of everyday life. Whether we think of
security for a room or security for digital information, the goal is similar: pro-
tect something important from unauthorized access or tampering! In terms of
protecting a physical area such as a room, we consider physical security with
doors, locks, and other mechanisms to prevent unauthorized physical access.
In terms of protecting digital information, we can also employ physical secu-
rity to prevent unauthorized physical access to devices that contain the infor-
mation. However, for digital information we also must consider other forms
of security, because physical security alone does not provide complete protec-
tion when digital information is accessible through an application, through a
system, or over a network.

When it comes to forms of security involved with storing and managing
digital information, we often think or hear of the terms information security,
data security, and database security. These terms may seem equivalent and
interchangeable when it comes to protecting digital information. However,
while each term has security goals in mind, the actual goals of each vary in
both scope as well as how to achieve those goals. In this first chapter, we intro-
duce these terms and explain how they provide the basis for security concepts
presented in subsequent chapters.

2 • Database security

1.1 INFORMATION SECURITY

Information security refers to protecting data in general and in any form.
Technically, the data may be digital or nondigital, although this text focuses
on digital data. The data may be sitting in storage, in the act of being pro-
cessed, and/or being communicated between parties. Information security is
considered a broad definition of protection, encompassing every state or form
in which the information exists. This broad definition also leads us to three
goals, or principles, by which information security has been established: con-
fidentiality, integrity, and availability. These principles are often referred to as
the CIA (for confidentiality, integrity, and availability) Triad for Information
Security.

Confidentiality

Confidentiality refers to the protection of information against unauthorized
access. This principle keeps sensitive information confidential and therefore
accessible only to an authorized agent (such as a person, application program,
or system service). An example of confidentiality in practice is allowing only
an authorized user to access certain information, such as their own account
or an information that is delivered to them over a network. Such a restriction
prevents access or disclosure of the information to any unauthorized party.

Integrity

The information security principle of integrity refers to the protection of
information against unauthorized modification or deletion. A goal of integrity
is to maintain information in a manner that is expected and accurate. As an
example of this integrity goal, consider a financial document where a value in
that document is accidentally—or intentionally—modified in an unauthor-
ized manner. Such a modification could portray a higher or lower value than
in reality, and that could lead to inaccurate, false, or invalid information being
presented.

Another goal of integrity is to keep information consistent with other
information, so that if one piece of information is changed (whether in an
authorized or unauthorized manner), that change does not conflict—or
become inconsistent—with other information. As an example of such incon-
sistency, again consider an unauthorized modification of a value in a financial
document, and that value is also referenced to derive a second value, say a

introDuction to information security, Data security, anD Database security • 3

sum or average. But if that second value remains unchanged, the correlations
between the modified value and the derived value become inconsistent with
each other. In other words, to maintain integrity with consistency, both values
must be updated so that the first modified value is reflected in the second
value such as a sum or average. Even though these examples involve unau-
thorized modification of information, the same idea holds for unauthorized
 addition or removal of information, where that information derives other
information such as a sum, average or even a count.

Availability

The third information security principle of availability provides timely acces-
sibility of information to agents authorized to access that information. The
types of information can be broad, such as information stored within a file
or information provided by an application or service, such as a web server
or database server. The goal of availability is to prevent situations where an
authorized agent is unable to access information that should be accessible
to them. As an example of availability in practice, consider a database server
that stores financial information about bank accounts and is accessed by users
that work at the bank or are customers of the bank to obtain such informa-
tion. Such a user should be able to access the information of an account to
which they are authorized and achieve this access in a timely manner. If the
information is retrieved to the user within the expected time, the principle of
availability is met. The problem lies when that information is not retrieved or
made available within the specified time, presenting a delay (or maybe even
no response at all) to the authorized user.

The factors that can affect availability are numerous and broad, but can be
categorized into the following problems and solutions:

 • Hardware failure, which usually involves a faulty storage device that pre-
vents access to information stored on that device.

 • System outages, caused by power failure, environmental damage, and even
catastrophic events.

 • Software bugs or faulty software that does not operate as intended.
 • User attacks that overwhelm the system with busy or non-legitimate work,

thereby preventing the system from being able to process legitimate work
or the work that the system really should handle. Such an attack is com-
monly called a Denial of Service (DOS) attack when the attack is carried
out by one source, and a Distributed Denial of Service (DDOS) attack
when the attack is carried out by multiple sources.

4 • Database security

1.2 SECURITY THREATS, CONTROLS, AND REQUIREMENTS

Now that we have a broad understanding of information security, before we
move into more detailed approaches involving data security and database
security, let’s describe the concepts of security threats, security measures, and
security requirements. These concepts are applicable to information security
as well as data security and database security.

Security threats

A security threat is a malicious user, program, or service that attempts to
compromise confidentiality, integrity, and/or availability. Typically, we view
a security threat as occurring by an agent that is not associated with (or even
not known by) the organizational environment. Such security threats are often
referred to as external threats. As an example of an external threat, consider a
person who is not affiliated with an organization and attempts to access sensi-
tive information within the organization over a network. Certainly that user is
not authorized to access that sensitive information. The sensitive information
may be stored on one of the organization’s servers, contained in one of the
organization’s transmitted emails, or other numerous possibilities. The prin-
ciple of confidentiality helps prevent the unauthorized access of the sensitive
information through one or more mechanisms (or controls, which we describe
later), thereby keeping such information confidential against unauthorized
parties.

In addition to external threats, we must also consider internal threats.
An internal threat involves an agent that is affiliated with or recognized
by the organization. Such threats can pose a greater security challenge,
because the person has a familiarity with the environment, or the agent
may already have authorized access to certain information or resources. As
an example of an internal threat, consider a person that is part of the orga-
nizational environment and is allowed to access financial information but is
not allowed to access human resource information. The person attempts to
access human resource information about someone else. In this scenario,
the principle of confidentiality aims to keep that human resource informa-
tion confidential from that person. The concept of allowing or disallowing
access to certain information not only applies to people or users, but to any
agent within or outside of an organization, such as a running program or
service, like a web server, file server, or application communicating on a
network.

introDuction to information security, Data security, anD Database security • 5

Security controls

Each security principle can be enforced by an implementation of one or more
security mechanisms, or controls. The exact mechanism(s) or control(s) in a
given situation can vary by many factors, such as the type of environment,
operational needs, and organizational policies. As an example, a common
control for confidentiality involves encryption, where an agent must have the
required key (typically a password) to access the information. Without that
key the information remains encrypted and thus confidential. However, in an
environment where users are mobile and/or unable to practically provide a
password, a control for confidentiality may instead involve a physical compo-
nent that provides the required key—such as a card, fob, or wearable device.

A common control for integrity involves checksums or hashes on data to
detect modifications to the data. As with confidentiality, other controls for
integrity may be required depending on the situation.

Controls for availability can also vary depending on the situation. With
regard to storage device failure, a variety of controls may be implemented.
One approach may rely on regular data backups, so that data on a failed device
can be restored onto a replacement device. For a faster and even automated
approach, we may consider the use of redundant array of independent devices
(RAID), where multiple storage devices are configured and used in ways to
prevent the failure of a device to impact the accessibility to the stored data.
Many RAID configurations exist, but the main idea is to use redundancy to
store data one more than one device, so the failure of one of those devices
still leaves the data accessible on a functional device. In terms of system out-
ages, controls may range from uninterruptible power supplies (UPSs), backup
power generators, antistatic measures, to even redundant or backup systems.
Faulty programs may involve controls such as proper design, implementa-
tion, testing, and code reviews. Last but not least, threats by DOS and DDOS
attacks may be mitigated by controls involving anti-malware programs, intru-
sion detection systems, or network devices such as firewalls.

Security requirements

Note that requirements as well as controls for confidentiality, integrity, and
availability can vary greatly across types of applications or systems. We have
listed some general security threats and solutions, and depending on the
purpose or environment of the application or system, we may have to con-
sider any of the threats and solutions we described, or other ones altogether.

6 • Database security

Later we will discuss more such threats and solutions in the context of a data-
base environment.

Requirements of confidentiality, integrity, and availability can also vary
greatly across organizations. One organization (such as a financial institu-
tion) may have greater demands for confidentiality of information compared
to another organization (such as an advertising agency that gathers mailing
addresses). The greater demand may be in the form of requiring confidenti-
ality for larger amounts or percentages of overall data. The greater demand
may also be in a stronger form of confidentiality, such as requiring two fac-
tor authentication (for example, requiring a password and physical token or
device card) rather than a password alone to access sensitive data. Integrity
requirements can vary, depending on the amount of data to verify as well as
how to verify the data. This can be further broken down into how the data is
accessed, who accesses the data, how data is processed, as well as how data
may relate with other data. Lastly, availability requirements can vary, depend-
ing on what data or resources are to be made accessible in a timely manner.
We also must consider the window of time that defines a “timely manner.” In
more critical environments, that window may be within a minute or second
of time. In less critical environments, that window may be an hour or even
longer.

An organization’s requirements for confidentiality, integrity, and avail-
ability will be identified within the organization’s security and operational
policies. It is important that the objectives of the organization’s security and
operational policies are met or exceeded with the security solution design,
implementation, and configuration. The security solution should be tested
to ensure those objectives are met not only once deployed, but also routinely
afterwards to ensure that the security solution is effective as the data and envi-
ronment changes or evolves.

1.3 DATA SECURITY

Data security has similar goals and objectives as information security—with
the same fundamental principles of confidentiality, integrity, and availability.
However, data security is often associated with only data that is at rest or saved
in persistent storage, such as a magnetic disk, flash drive, or solid state device.
Even though data security follows the same goals and objectives of informa-
tion security, the goals are often much more focused on how to achieve and

introDuction to information security, Data security, anD Database security • 7

implement them. Such focus allows the goal to be more precisely defined and
detailed in how the solution is achieved. As an example, to protect data against
unauthorized modification (integrity), a data security approach may involve
monitoring accesses to certain data to reveal who accesses the data as well as
how the data is accessed. Such analysis can reveal anomalies to identify poten-
tial threats, such as when data is written unexpectedly (say, outside of normal
work hours or outside of the expected processing pattern).

1.4 DATABASE SECURITY

“Database security refers to the range of tools, controls, and measures designed
to establish and preserve database confidentiality, integrity, and availability.”1
We can view database security to have the same objectives and principles as
data security and information security, but within the scope or level of a data-
base environment. This further focuses the choice, design, implementation,
and configuration of controls available at the database level.

Data confidentiality

To achieve confidentiality in database security, we can employ controls such as
privileges (which we cover in Chapter 5, “Database Privileges“) and encryp-
tion of stored data (which we cover in Chapter 7, “Other Database Security
Controls”). Privileges are a database system control where the database sys-
tem itself manages data access. As described earlier, encryption can provide
confidentiality against agents that do not have the proper credentials and may
be implemented by the database system, modules, or other programs.

To achieve database integrity, in addition to checksums or hashing, we
can use a range of controls that appear as early as the database design phase.
This includes proper database design with normalization, defining referential
integrity constraints, and identifying when concurrent access may occur. We
cover database design and normalization approaches to help maintain data
integrity in Chapter 2, “Database Design,” and other data integrity controls in
Chapter 8, “Transactions for Data Integrity.” We also cover mechanisms that
help maintain integrity when multiple applications and/or users access the
same data in Chapter 9, “Data Integrity with Concurrent Access.”

1https://www.ibm.com/cloud/learn/database-security

https://www.ibm.com/cloud/learn/database-security

8 • Database security

Data integrity

We previously defined the term integrity to detect when data has been modi-
fied in an unauthorized manner. Within a database environment we also have
four types of data integrity that we must also recognize, and describe now.

Entity integrity

The first type of data integrity to recognize within a database environment
is entity integrity. The idea behind entity integrity is similar to the definition
of a relation in the relational database model, which we describe in more
detail shortly. In a database design model, an entity describes a set of data
for a particular theme or context, such as for an employee. In the relational
database model, we can consider an entity to be implemented as a table or
relation. Each instance of an entity (or row in that table) represents one spe-
cific instance or case of that theme. For example, an instance of the employee
entity (or each row in the employee table) represents one specific person and
contains data to just that person.

Entity integrity requires that each entity instance (or each table row) to be
uniquely identified by a primary key value. The primary key may consist of
one or more attributes of the entity (or columns of the table). If the primary
key is a single attribute, then all of the values in that one column must be
unique. If the primary key contains multiple attributes (a composite key), the
combined values of the columns must be unique. Primary key values for an
entity should be not only unique, but non-null and contain no more attributes
or columns than is necessary to provide uniqueness.

As examples, let’s consider the following set of tables that hold data for an
organization that manages employees, departments, and projects (Figure 1.1).
Each theme is implemented as a table and contains data specific to that theme.
For representation purposes, we will use one of the popular conventions of
representing table names and column names with PascalCase, also known as
CapitalCase, where the first letter of each word in the name is capitalized
and all other letters are lower case. When reading a name, such capital letters
indicate word separation without the use of other character separators such as
an underscore symbol, hyphen, or space. Also, when using PascalCase, abbre-
viations within a name are commonly represented with all capital letters, such
as ID for “identifier” or SSN for “social security number.”

This textbook also follows the principles of the most common database
model, the relational database model. The relational database model defines

introDuction to information security, Data security, anD Database security • 9

that each table (or relation) consists of a set of rows (or records), where each
row contains a set of data to a specific entity of the table. Each column (or
attribute) contains at most one piece of data in each row. In certain cases,
no value (a null value) may be given to a column in a row. No two rows are
identical; that is, no two rows have the same values for each corresponding
column.

For the employee entity, a table named Employee holds data about the
organization’s employees, and each row in the table represents one employee.
In order to uniquely identify an employee, we need to specify a primary key
of one (or possibly more) attributes or columns, whose data values would refer
to exactly one row in that table. The EmployeeId attribute serves this pur-
pose, as every employee has a unique EmployeeId value in the organization.
At times we may consider other attribute possibilities as unique identifiers,
and that may be valid for certain tables and attributes. While this particular
set of data for the Employee table does have unique last names, we may be
tempted to specify LastName (or LastName and FirstName) as a primary key.
However, in a practical scenario we could not assume that every employee
does or will have a unique last name (or unique last name and first name). As
such, relying on last name, or last name and first name, as a unique identifier
would not provide entity integrity in general.

In a similar manner, data about departments is implemented with a
Department table and each row contains data of a specific department.
DepartmentID is chosen as a primary key value. We may have alternatively
chosen DeptName as a primary key, presuming that no two departments have
the same name. While that may be a valid assumption, we may also consider
that DepartmentID may be an introduced key (or surrogate key) to help pro-
vide a more uniform and possibly easier way to specify a primary key value
for a particular department (this idea may become clearer when we get to the
ProjectAssignment table later).

Referential integrity

The next form of data integrity, referential integrity, may be the more familiar
type of integrity to database users or administrators. Here, we look at require-
ments needed to support relationships of data across tables. In a database,
data in one row can relate with data in another row (of another table or pos-
sibly the same table) to generate more complete information. For example,
consider these tables in an organization where employees are assigned to at
most one department.

10 • Database security

Employee

EmployeeId FirstName LastName Office DeptID

1000 Sam Smith 103 D2

1001 Scotty Smalls 302 D3

1002 Alex Hall 202 D1

1003 Bob Brown 105 D2

1004 Susan Shu 203 D1

1005 Marcia Gold 201 D1

1006 Gary Grant 101 D2

1007 Alice Aziz 102 D2

Department

DepartmentID DeptartmentName Manager AdminAsstEmpId

D1 Accounting 1003 1004

D2 Sales 1006 1005

D3 Marketing 1001 (null)

Project

ProjectID ProjectName Client

P1 Red Ava’s Volleyball Camp

P2 Blue Katie's Krafts

P3 Yellow Brittany’s Boutique

P4 Green Izzy’s and Emily’s Anime World

P5 Orange Ron’s Rock and Roll Collectables

ProjectAssignment

EmpId ProjID

1000 P1

1000 P2

1001 P1

1001 P3

1001 P4

1002 P1

1002 P2

1002 P5

1003 P3

1003 P4

1006 P5

FIGURE 1.1. Example database tables for an organization.

introDuction to information security, Data security, anD Database security • 11

The Employee table provides the first name, last name, and office of a
particular employee. However, if we need more information about a given
employee’s department, such as department name or administrative assistant,
we can derive that information by using the DeptID column value at that
employee’s row in Employee as a foreign key that relates to the primary
key DepartmentID in Department. Take for example the Employee table
row for Sam Smith with the DeptID attribute D2. We can then retrieve in
the Department table the row identified by D2 to derive that employee Sam
Smith is with the Sales department.

A relationship refers to the mapping of rows in one table to rows in
another (or even the same) table to provide more information with com-
bining data. A relationship instance refers to a specific example of a
given relationship. For example, we just mentioned that the relationship
between Employee and Department allows us to derive the department
information of a given employee. A relationship instance refers to a spe-
cific example of a mapping from Employee to Department, for example,
that the row for Sam Smith in Employee relates to the row for Sales in
Department.

Referential integrity requires that for each relationship instance, a
foreign key value must refer to an existing primary key value. Between
the Employee and Department tables, referential integrity is main-
tained because each DeptID value in Employee refers to an existing
DepartmentID in Department. As a specific example, or instance, of ref-
erential integrity being maintained between Employee and Department,
consider another EmployeeId 1003, which has a DeptID of D1, associ-
ating Susan Shu with the Accounting department. Because D1 is an exist-
ing DepartmentID in Department, referential integrity is maintained.
However, if an employee were to have a DepartmentID of, say D5, ref-
erential integrity is not maintained because DepartmentID D5 does not
exist in Department.

The Employee and Department tables also have a second relationship,
where a row in Department relates to a row in Employee to provide more
information about a department’s administrative assistant. For example,
with DepartmentID D2, the AdminAsstEmpId value is 1005, referring to
EmployeeId 1005 in Employee, which is Gary Grant. Because each foreign
key value of AdminAsstEmpId in Department refers to an existing primary
key value of EmployeeId in Employee, referential integrity is maintained for
that particular relationship.

12 • Database security

ProjectAssignment happens to be a table with two relationships, one with
Employee and another with Project. In ProjectAssignment, EmpId is a for-
eign key to EmployeeId in the Employee table, and ProjID is a foreign key
to ProjectID in Project. Referential integrity likewise requires that each row
in ProjectAssignment has a foreign key value that corresponds to an existing
primary key value in Employee as well as an existing primary key value in
Project.

ProjectAssignment is also an example of an entity with a composite
(multi-attribute) identifier, where EmpId and ProjID together form the
primary key. Here, one must provide a value to both EmpId and ProjID
to uniquely identify a row in ProjectAssignment. In the larger picture,
ProjectAssignment is actually an intersection table that implements a many-
to-many relationship between Employee and Project, where a given row in
ProjectAssignment relates an employee with a project. As such, the compos-
ite primary key of ProjectAssignment not only uniquely identifies a row in
ProjectAssignment, but also represents a relationship instance between a spe-
cific row in Employee and a specific row in Project.

While referential integrity requires a foreign key value to correspond to
an existing primary key value, referential integrity does not require a foreign
key value to always be defined or specified in every row of a table that has
a relationship, as long as that foreign key is not part of a composite primary
key to that table. When a foreign key is not part of the table’s primary key,
the idea here is that a foreign key value may not be known or not exist yet,
in which case there may not be a foreign key value to specify (at least at that
time). The assumption is that in the future this foreign key value will become
known and added to the row, say after the value is determined, or after the
corresponding primary key is added to the related table. As an example, in the
Department table, Marketing currently does not have an administrative assis-
tant. Perhaps there may not be a person to specify at this time because that
person is not yet an employee and hence does not exist in the Employee table,
or perhaps the person is a current employee and does exist in Employee
but has not yet been appointed. In either case, a null value may be speci-
fied for AdminAsstEmpId in the Department row for Marketing, because
AdminAsstEmpId is not part of Department’s primary key. After the person
is added to Employee or appointed, their EmployeeId value may be set as the
AdminAsstEmpId value in Department for the Marketing row.

Entity integrity also plays a part in supporting this many-to-many rela-
tionship, requiring that every row of ProjectAssignment contain a value for

introDuction to information security, Data security, anD Database security • 13

EmpId as well as ProjID. This means that in order to specify a project assign-
ment, we must have both an employee and project—the absence of either is
an invalid project assignment. Even though EmpId and ProjID are foreign
keys in ProjectAssignment, because they also form the primary key in that
table (and because of entity integrity), we will require that both EmpId and
ProjID have non-null values in ProjectAssignment. In general, if a foreign
key in a table also is part of the table’s primary key, then entity integrity does
require a non-null value of that foreign key in every row of that table.

Domain integrity

Domain integrity in a database environment refers to a data value that exists
when expected and in the proper form. When a table is created, the definition
and constraints defined for a column causes the database management system
(DBMS) to play a huge role with enforcing domain integrity. For example, by
defining the data type for a column when a table is created, we are defining
the domain of values that are stored in that column. A column defined with
an integer data type will store a value as a whole number, even if the value is
provided as a decimal number. And if an inserted value cannot be converted
to an integer, the DBMS will generate an error.

Domain integrity may even involve enforcing that a row’s value for a
column is present when required. Such a specification for a column can be
defined by indicating its value must be NOT NULL. In contrast, a NULL
specification indicates that the value may or may not be specified.

One can also employ the use of constraints to ensure that data values
conform to an expected value or format. For example, consider a column that
stores a value in U.S. dollars and cents. By specifying the data type of that col-
umn as a monetary type or number type with two decimal places, we ensure
that a value stored has two digits for the cents value. An inserted number that
has, say, one or three decimal digits that cannot be converted properly, will
not be allowed by the DBMS. Other forms of constraints can ensure other
types of criteria, such as ensuring a column value is within a range of values.

User-defined integrity

Even with the other three forms of data integrity that have been described,
in a particular environment or situation we may still have requirements to
define. User-defined integrity refers to the addition of those requirements,
typically in the form of business rules. An example of a business rule involves
a minimum number of items that can be placed in an order. Another example

14 • Database security

may be that a department must have at least two employees to exist. If data
does not fulfill those requirements, then the data is considered to violate the
data integrity of that organization. The concept of user-defined integrity may
not be as formally defined as the others, but it may play a significant part in
the data integrity of an organization.

Data availability

With database security, if availability is compromised such that data is
lost or corrupted, as part of recovery we may have to use data backups, as
described with information security. There are often various backup and
restore approaches based on facilities provided by the operating system and/
or applications that carry out the backup and recovery tasks. Regarding data-
bases, there are often built-in mechanisms within the DBMS itself that can
be used to quickly and conveniently issue backup and restore operations. We
cover some of those approaches in Chapter 3, “Database Management and
Administration” and Chapter 9, “Data Integrity with Concurrent Access.”

As with information security, in addition to hardware failure of storage
devices, we may also have to consider other forms of hardware failure, such
as with RAM, CPU, network connection, or network card. Controls to miti-
gate these threats also involve redundancy of hardware components, so that
the operation of one failed component can be quickly replaced by operation
of a similar functional component. If such a switchover is automatic, we can
achieve high availability, where the system continues to operate in a manner
that minimizes or eliminates the effect of the failure to users. High availability
can involve RAID systems or other redundant hardware involving multiple
RAM banks, CPUs, network connections, or network interface cards. High
availability often requires special hardware, operating systems, and/or soft-
ware that is particular to the system platform, operating system, and availabil-
ity objectives. Depending on the security objectives of the database system,
we may even involve multiple database servers to provide availability of the
database information in the event that one of the databases fails, say by power
outage or catastrophe.

Database security may also involve many of the availability controls men-
tioned earlier. This may include hardware and/or software controls such as
UPSs, firewalls, and other network security mechanisms. When database
applications are present, we may also have to consider attacks that could
compromise availability (as well as confidentiality or integrity). Controls that

introDuction to information security, Data security, anD Database security • 15

include proper code design, reviews, and testing of database applications or
mechanisms can reduce those threats.

1.5 SUMMARY

In this chapter, we introduced the concepts of information security as well how
data security and database security involve more focused and specific usage of
those concepts. Other security controls involving user account management
can also play a role with database security. As with general user accounts,
a security control may involve proper review of database user accounts to
mitigate certain threats. Such threats include ensuring that an account of a
former employee, or an account created for testing or backdoor purposes is
properly disabled and inaccessible to a malicious agent. For accounts that
are legitimately active, we must also ensure that proper data access or privi-
leges are assigned to the account, so that an agent has access to the data in
which they are allowed and does not have access to data that is disallowed. We
describe the concepts of database user accounts and managing access to data
in Chapter 4, “Database User Accounts,” Chapter 5, “Database Privileges,”
and Chapter 6, “Roles.”

C H A P T E R 2
database desIgn

While we may often consider database security in terms of managing the
access to data, there are other areas we must also recognize that can threaten
database security. The design of a database (that is, the structure of the tables
and relationships between them) can also have a database security impact
in terms of integrity. We typically refer to integrity in computer security as
ensuring that data is not altered in an unauthorized manner. But with database
security we must also consider cases where data is validly altered in an author-
ized manner, but the changes may not be seen as expected. Such phenomena
can especially arise when data is duplicated in a database. As an example, sup-
pose we have a data item that is replicated in a database (for example, the data
item’s value appears in multiple locations or tables). We issue an authorized
change to one copy of a data value (at one location or table of the database).
If we subsequently retrieve that same data value (at that same location), we
will see the authorized change as expected. But suppose we instead retrieve
the value of that same data item from another copy of the data (the data rep-
licated at another location or table and was not changed) We would obtain
the previous value. Because we can now retrieve more than one value for the
same data item, we have a data inconsistency. Some retrievals of that data
yield one value and other retrievals yield another value, so we are left with the
undesirable question of which value (if any of them) is accurate or up-to date.
This chapter explores these problems of data inconsistency with duplicated
data and the solution to these problems with normalization. In Chapter 9, we
will also see other forms of data inconsistencies that may result from concur-
rent database access and investigate other solutions to resolve that issue.

18 • Database security

2.1 NORMALIZATION

Normalization is an important part of database design because that process
can reduce or eliminate the potential for insert, update, or delete anomalies.
Within a database environment, normalization also helps maintain integrity
by preventing such anomalies, such as update anomalies and data inconsisten-
cies that can result with duplicated data.

To provide examples of these anomalies and to see how we can resolve them,
let’s consider some data in a real estate agency scenario shown in Figure 2.1.
We consider this data to be in list form because all of the data is contained
within one list, and a particular row contains the data for a property, the realtor
assigned to that property, and the realtor office. For brevity and to focus on the
concepts, we only include some pertinent data items and not an exhaustive list
of data that one would actually see in a more detailed listing scenario.

FIGURE 2.1 Data in list form for a real estate agency.

Each row in this table (or relation, using the relational database model) rep-
resents the listing of a property for sale. For each row, we can obtain some basic
information about the property itself (address, number of bedrooms, area or size
of the interior, and price). Each row also yields information about the realtor
(first name, office address and city location, and phone number for the realtor).

In the relational database model, the relation for this data set can be
described with the structure or definition given in Figure 2.2.

Listing (RealtorName, OfficeAdr, OfficeCity, Phone, PropAdr, PropCity, NBeds,
Area, Price)

FIGURE 2.2 Original relation structure or definition of Listing.

Database Design • 19

where Listing is the name of the relation, the relation attributes are comma-
separated within parenthesis, and the attribute(s) that define the primary key
are underlined. Here the primary key of Listing is the set of attributes (Phone,
PropAdr, PropCity), so that, given a set of values for each of those attributes,
we can derive a unique row or property listing and its listing realtor. For exam-
ple, given the values (“555-1111,” “997 George,” “CityA”), we can uniquely
derive the information in the third row of the Listing table.

While this relation can be used to store and retrieve data about a particular
property and its realtor, this relation does present database integrity concerns.
Because certain data is duplicated (such as RealtorName, OfficeAdr, PropAdr,
and Price, to name a few), the potential for modification anomalies with updates
and inconsistencies is introduced. As an example, suppose realtor Penny updates
her office address from “137 Main” to “417 Main.” Unless that address change
is applied to every occurrence of the previous address, the previous address will
coexist in the database along with the new address. This coexistence of different
values for the same data is a data inconsistency, where a certain data retrieval
operation may yield one address, but another data retrieval operation may yield
a different address for the same realtor. To see how this may happen, suppose
that OfficeAdr is changed to “417 Main” for only the first row of the relation
(the row with a PropAdr value of “17 Highland”), as shown in Figure 2.3. A
subsequent data retrieval with primary key values of (“555-1111,” 17 Highland,”
“CityA”) for (Phone, PropAdr, PropCity) yields the new OfficeAdr value of “417
Main.” But a data retrieval with primary key values (“555-1111,” “1565 State
Rd,” “CityB”) yields the previous OfficeAdr value of “137 Main.”

Realtor
Name

Office
Adr

Office
City

Phone PropAdr Prop
City

NBeds Area Price

Penny 137 Main CityA 555-1111 17 Highland CityA 3 2000 220000

Penny 417 Main CityA 555-1111 1565 State Rd CityB 4 2900 290000

Penny 137 Main CityA 555-1111 997 George CityA 4 2200 240000

Penny 137 Main CityA 555-1111 123 Big Lane CityA 8 5000 750000

Bob 455 Oak CityB 555-2222 5 Lighthouse CityB 4 2000 230000

Bob 455 Oak CityB 555-2222 190 Brown CityC 2 1700 140000

Bob 455 Oak CityB 555-2222 123 Big Lane CityA 8 5000 719000

FIGURE 2.3 Real estate data with two data inconsistencies.

Another example of a data inconsistency exists with the “123 Big Lane”
property. Suppose Bob reduces the price of that property to $719,000, also
as shown in Figure 2.3. Because that property is listed with multiple realtors,

20 • Database security

a change to that property’s data (such as a price change) must be applied to
each realtor’s listing, otherwise the old price and new price will coexist in
the databases, resulting in another data inconsistency. The only way we can
resolve such database integrity issues with inconsistencies is to either ensure
that all duplicate occurrences of a data value are updated (which may be tricky
to accomplish) or better, normalize the relations that hold the data.

To help eliminate duplication and the possibility of data inconsistencies,
we can apply database normalization techniques that split tables as necessary
to create new tables and new relationships between those tables. The normal-
ization technique we demonstrate is based on the use of functional dependen-
cies to achieve Boyce-Codd Normal Form (BCNF), which can eliminate most
forms of duplication.

The concept of a functional dependency is a way to represent which attri-
butes can derive a unique set of other attributes. Given a set of values for the
attributes on the left side of a functional dependency, we can derive a unique
set of values for the attributes on the right side of that functional dependency.
Because the primary key of (RealtorPhone, PropAdr, PropCity) together can
derive a unique row in Listing, the functional dependency for Listing with
that understanding is given in Figure 2.4.

(Phone, PropAdr, PropCity) -> (RealtorName, OfficeAdr, OfficeCity, NBeds, Area, Price)

FIGURE 2.4 Functional dependency for original Listing table based on the primary key.

Here, given a set of values for (Phone, PropAdr, PropCity), we can derive
a unique set of values for (RealtorName, OfficeAdr, OfficeCity, NBeds, Area,
Price), which in this case derives a unique row in the Listing relation.

The process of normalization (for our purposes to BCNF) is based on
functional dependencies and candidate keys. Like a primary key, a candidate
key consists of one or more attributes that can derive a unique row in a table.
A table can have only one primary key but can actually have multiple candi-
date keys. If a table has only one candidate key, that key becomes the table’s
primary key. On the other hand, if a table has multiple candidate keys, one is
chosen to be the table’s primary key, and the others exist as alternate retrieval
keys that can still derive a unique row.

To achieve BFNF normalization, for each functional dependency, the
attributes that compose the left side of that functional dependency must
be a primary or candidate key to some table. If that is not the case then we

Database Design • 21

split a table into two tables to fulfill that goal. The specific table to split and
how we split that table is based on the left and right sides of that functional
dependency.

To illustrate the concept of BCNF normalization and see how it can
reduce data duplication and resolve the potential of data inconsistencies, let’s
consider the relational form of the Listing table and the functional depen-
dencies of those attributes. We already established the table definition for
Listing in Figure 2.2 and the functional dependency based on its primary key
in Figure 2.4.

Suppose we also note the following functional dependencies also exist,
given in Figure 2.5. Combined with the functional dependency given in
Figure 2.4, we are now considering three functional dependencies total.

Phone -> (RealtorName, OfficeAdr, OfficeCity)
(PropAdr, PropCity) -> (NBeds, Area, Price)

FIGURE 2.5 Other functional dependencies for original Listing table.

Note that we do not need to consider the actual table data for this normali-
zation task, although the data may be considered in deriving the functional
dependencies themselves. However, we will consider the table data by remov-
ing duplicate rows that may appear after splitting tables, as we will soon see.

The process of normalization to BCNF is shown in Figure 2.6. The main
idea is to examine every functional dependency and determine whether to
split a table. If a table is to be split, steps 1, 2, and 3 define how to split the
table based on the functional dependency. The last step (3b) establishes a
relationship between the table that was split and the new table.

For each functional dependency F:
If the left side of F itself is not a candidate key to some table
then

Step 1: Create a new table T that consists only of the attributes
in both sides of F.

Step 2: Set the primary key of T as the attributes in F’s left
side.

Step 3: In the existing table E that already had the attributes
of F:
a Remove the attributes of F’s right side that are not
part of E’s primary key.

b Set the attributes in F’s left side to be a foreign key
into T.

FIGURE 2.6 Normalization process to BCNF.

22 • Database security

Looking at the first functional dependency, shown in Figure 2.4 we con-
firm whether the left side (Phone, PropAdr, PropCity) is itself a primary or
candidate key to some table. Because that is the primary key of Listing, we do
not need to go any further with that first functional dependency and proceed
with the second.

Looking at the second functional dependency, the first in Figure 2.5 we
confirm whether the left side, Phone, is itself a candidate key to some table. Note
that while Phone is part of the primary key in Listing, Phone by itself is not a
primary key or candidate key, so we proceed with the three steps to split Listing.
In step 1, we first create a new table that consists only of the attributes Phone,
RealtorName, OfficeAdr, and OfficeCity. Let’s call this new table Realtor. In
step 2, we then set Phone to be the primary key of Realtor. Finally, for step 3, in
the Listing table we remove RealtorName, OfficeAdr, and OfficeCity. We leave
Phone in Listing but set Phone as a foreign key in Listing that relates to the pri-
mary key Phone in Realtor. After being split because of the second functional
dependency, the result is the two tables defined in Figure 2.7.

Listing (Phone,PropAdr,PropCity,NBeds,Area,Price)
Realtor (RealtorName,OfficeAdr,OfficeCity,Phone)

FIGURE 2.7 Original Listing table split into two tables.

Note that in the Listing table, Phone is both underlined and italicized.
This means that Phone is part of the primary key, and is itself a foreign key
into Realtor. Figure 2.8 shows how the split tables appear with their data at
this time.

Because, by definition in the relational database model, a table does not
have duplicate rows (that is, rows with the same value in each corresponding
column), we remove any duplicate rows that may exist after splitting a table.
In this example, after the normalization process we have 5 duplicate rows in
Realtor, and after removing them the Realtor table is now reduced to that
shown in Figure 2.9.

Now on to the last functional dependency. We confirm whether the left side
(PropAdr, PropCity) is itself a primary or candidate key to some table. It is not,
so we likewise proceed with the three steps to split the Listing table. In step 1,
we first create a new table that consists only of the attributes PropAdr, PropCity,
NBeds, Area and Price. Let’s call this new table Property. In step 2, we then set
(PropAdr, PropCity) to be the primary key of Property. Finally, for step 3, in the
Listing table we remove NBeds, Area, and Price. We leave (PropAdr, PropCity)
in Listing but set it as a foreign key in Listing that relates to Property. The result
is now the following three tables, whose definitions are given in Figure 2.10.

Database Design • 23

Listing (Phone,PropAdr,PropCity)
Realtor (RealtorName,OfficeAdr,OfficeCity,Phone)
Property (PropAdr,PropCity,NBeds,Area,Price)

FIGURE 2.10 Resulting table definitions after normalization of real estate data.

The tables with their data are shown in Figure 2.11.

Because we have analyzed all the stated functional dependencies and the
left side of each is now a candidate key to some table, we have established
these tables to be in BCNF. Hence, duplicated data has been reduced, and

Listing

Phone PropAdr PropCity NBeds Area Price

555-1111 17 Highland CityA 3 2000 220000

555-1111 1565 State Rd CityB 4 2900 290000

555-1111 997 George CityA 4 2200 240000

555-1111 123 Big Lane CityA 8 5000 750000

555-2222 5 Lighthouse CityB 4 2000 230000

555-2222 190 Brown CityC 2 1700 140000

555-2222 123 Big Lane CityA 8 5000 750000

Realtor

RealtorName OfficeAdr OfficeCity Phone

Penny 137 Main CityA 555-1111

Penny 137 Main CityA 555-1111

Penny 137 Main CityA 555-1111

Penny 137 Main CityA 555-1111

Bob 455 Oak CityB 555-2222

Bob 455 Oak CityB 555-2222

Bob 455 Oak CityB 555-2222

FIGURE 2.8 Split tables with their data.

Realtor

RealtorName OfficeAdr OfficeCity Phone

Penny 137 Main CityA 555-1111

Bob 455 Oak CityB 555-2222

FIGURE 2.9 Realtor table with duplicate rows eliminated.

24 • Database security

the corresponding data inconsistencies have been resolved. For example, if
Penny now updates her office address from “137 Main” to “417 Main,” that
involves changing the data in exactly one location (in the Realtor table). The
office address is not duplicated anywhere else, so there is now no possibility of a
data inconsistency involving the new address and previous address. In a similar
manner, if we were to now change the price of the “123 Big Lane” property,
that change is applied to exactly one location (in the Property table) and there is
now no possible data inconsistency involving the new price and previous price.

2.2 SURROGATE KEYS AND DATA INTEGRITY

The normalization we applied to achieve BCNF did reduce data duplica-
tion and potential for data inconsistencies. However, the potential of a data

Listing

Phone PropAdr PropCity

555-1111 17 Highland CityA

555-1111 1565 State Rd CityB

555-1111 997 George CityA

555-1111 123 Big Lane CityA

555-2222 5 Lighthouse CityB

555-2222 190 Brown CityC

555-2222 123 Big Lane CityA

Realtor

RealtorName OfficeAdr OfficeCity Phone

Penny 137 Main CityA 555-1111

Bob 455 Oak CityB 555-2222

Property

PropAdr PropCity NBeds Area Price

17 Highland CityA 3 2000 220000

1565 State Rd CityB 4 2900 290000

997 George CityA 4 2200 240000

123 Big Lane CityA 8 5000 750000

5 Lighthouse CityB 4 2000 230000

190 Brown CityC 2 1700 140000

FIGURE 2.11 Resulting real estate tables with data normalized to BCNF.

Database Design • 25

inconsistency—and database integrity concern—still remains if a change is
made to one of our primary key values. The reason is because in our scenario,
we still have a natural key chosen as a primary key for the Realtor table. A
natural key is one whose values have meaning associated with the scenario. In
Realtor, we chose Phone as the primary key, and Phone has a meaning associ-
ated with the scenario (that is, Phone contains the actual phone number of a
realtor).

To see how the potential of a data inconsistency still remains, consider that
Bob changes his phone number to “555-3333.” That data value exists not only
in the Realtor table, but potentially in multiple database locations as a foreign
key, in our case with the Listing table. There are some ways in which we can
eliminate this type of data duplication and its data inconsistency potential.
One way is to define and enforce referential integrity constraints with cascad-
ing updates, where if a primary key value changes, the database system will
automatically apply that change to every foreign key reference of that primary
key. With a cascading update defined between Realtor and Listing in our real
estate listing scenario, if Bob changes his phone number and we apply that
change to the Phone column in the Realtor table, the database system will
automatically apply that same change to the Phone column in Listing to rows
that have the previous value in Phone. While cascading updates are effective,
this approach does lead to a performance overhead consideration, in that if a
primary key value appears as a foreign key value a large number of times, the
cascade of the update may take a significant amount of time to update to all
occurrences of that foreign key value.

A second way to resolve such data duplication and data inconsistencies
and avoid cascading overhead is to introduce a surrogate key. A surrogate key
is an added primary key that is not part of the original data or and does not
contain values meaningful to the scenario, but is rather introduced to gen-
erate a unique value in each row. We will introduce a surrogate key named
RealtorID in the Realtor table, so the Realtor relation has the structure and
data given in Figure 2.12. The data of the surrogate key has unique values in
the RealtorID column such as those shown.

Note that RealtorID is now the primary key, rather than Phone. However,
Phone can still exist as a candidate key as an alternative means to retrieve a
unique row in Realtor.

We also have similar database integrity concerns with the use of PropAdr
and PropCity as a natural primary key for Property and duplication of its val-
ues as foreign keys (although changes to PropAdr and PropCity may be less

26 • Database security

likely unless a misspelling or inaccurate value was initially provided and needs
correcting). As with Realtor, we can introduce a surrogate key for Property
to avoid such integrity concerns. But we will also see another advantage of
surrogate keys: a surrogate key also provides the benefit of simplifying a com-
posite primary key and reducing the primary key to just one column. With a
surrogate key named PropID introduced in the Property table, we will have
the following Property table structure and data given in Figure 2.13.

Property (PropID, PropAdr, PropCity, NBeds, Area, Price)

Property

PropID PropAdr PropCity NBeds Area Price

P001 17 Highland CityA 3 2000 220000

P002 1565 State Rd CityB 4 2900 290000

P003 997 George CityA 4 2200 240000

P004 123 Big Lane CityA 8 5000 750000

P005 5 Lighthouse CityB 4 2000 230000

P006 190 Brown CityC 2 1700 140000

FIGURE 2.13 Property table with surrogate key.

In addition to reducing database integrity concerns with data duplica-
tion, reducing data inconsistencies that may arise when the primary key value
changes, and reducing the size of a primary key, a surrogate key can also
enforce referential integrity when a foreign key value is specified for an added
or changed row. As an example, if one were to add a new row to Listing
but mistype the phone number “555-1111” as “555-1112,” we have a refer-
ential integrity constraint violation because “555-1112” is not a primary key
in the current Realtor table. Likewise, because we now have a surrogate key
in Property, we no longer have to specify a composite foreign key in Listing,
which may otherwise result with mistyped values and referential integrity
constraint violations. Because we now use surrogate keys for Realtor and

Realtor(RealtorID, RealtorName, OfficeAdr, OfficeCity, Phone)

Realtor

RealtorID RealtorName OfficeAdr OfficeCity Phone

R001 Penny 137 Main CityA 555-1111

R002 Bob 455 Oak CityB 555-2222

FIGURE 2.12 Realtor table structure and data with surrogate key.

Database Design • 27

Property, such mistyping of foreign key values may become less likely. The
new Listing table structure and its data are as shown in Figure 2.14.

Listing (RealtorID,PropID)

Listing

RealtorID PropID

R001 P001

R001 P002

R001 P003

R001 P004

R002 P005

R002 P006

R002 P004

FIGURE 2.14 Referencing surrogate keys.

Now data duplication of values to Phone no longer exists, which helps
enforce integrity. A change to a Phone value requires only one change, and
that is in the Realtor table.

2.3 NORMALIZATION, ACCESS RESTRICTIONS, AND
BEYOND

In addition to reducing data duplication and enforcing database integrity,
normalization can also provide other database security benefits. By splitting
tables according to themes and functional dependencies, we may more easily
manage access to the data by allowing or disallowing access based on tables.
As an example in this real estate scenario, suppose we wanted to allow a per-
son to see data about properties, but not about realtors or listings. With the
normalized set of tables in the real estate scenario, we could allow the person
access to see the Property table but disallow that person to have access to
Realtor or Listing. Based on this concept, the original Listing table that held
all of the data could not support such discernment of access, because we could
then either allow access to all of the data or disallow access to all of the data.

However, even after normalization the data may be broken down (or
fine-grained) enough to support all or future security requirements in terms

28 • Database security

of tables. Now suppose a new regulation or business requirement requires a
potential buyer to be signed with a realtor in order to see a property’s street
address and area size. In other words, the general public cannot see a prop-
erty’s address or area. Based on the normalized Property table structure,
we can only either allow the public to see all Property data or disallow the
public to see any Property data. To enforce the restriction to the public of
street address and area based on table-level security, we can further break
down Property into two tables. One table (let’s name PropertyPublic) will
contain the columns in which we allow public access, and another table (let’s
name PropertyPrivate) will contain the remaining columns that the public
cannot access. Both tables would contain the same primary key values to
properly identify each row, as shown with the table structures and data in
Figure 2.15.

PropertyPublic(PropID,PropCity,NBeds,Price)
PropertyPrivate(PropID,PropAdr,Area)

PropertyPublic

PropID PropCity NBeds Price

P001 CityA 3 220000

P002 CityB 4 290000

P003 CityA 4 240000

P004 CityA 8 750000

P005 CityB 4 230000

P006 CityC 2 140000

PropertyPrivate

PropID PropAdr Area

P001 17 Highland 2000

P002 1565 State Rd 2900

P003 997 George 2200

P004 123 Big Lane 5000

P005 5 Lighthouse 2000

P006 190 Brown 1700

FIGURE 2.15 Splitting tables further to isolate sensitive data.

We could then allow the public to access the first table but not the second.
Persons who have signed with a realtor are authorized to access both tables, so
can be given access to both.

Database Design • 29

2.4 SUMMARY

In this chapter, we described database design techniques that can remove
certain data integrity risks from the start. While database design is an often
overlooked or underestimated phase of database implementation, it plays a
vital role in the security management of the database. We looked at design
approaches to manage access to certain data through tables. We explore this
idea of using tables to manage data access further in Chapter 5, “Database
Privileges.”

C H A P T E R 3
database management and
admInIstratIon

In this chapter, we explore and demonstrate a variety of tasks and controls that
a database administrator can carry out to maintain the information security
objectives of confidentiality, integrity, and availability of the data in a database.

For representation purposes, in this text we will represent SQL keywords
with all capital letters. For names of databases, tables, columns, and other
components we will use PascalCase (uppercase for the first letter of each
word with no underscores). There are other conventions to represent SQL
keywords and names of database components, and we opted for those con-
ventions to distinguish SQL keywords from component names and possibly
help with grasping the syntax and structure of the SQL statements that we will
introduce. SQL keywords are case insensitive, so if you wish to use another
convention, such as lower-case or camelCase for SQL keywords, you may do
so. Many DBMSs also use case insensitive names for databases, tables, col-
umns, and other components. However, some DBMSs do employ (or can
be configured to employ) case sensitive names for components, so the best
practice is to choose a convention and consistently use that.

We will also use certain fonts to distinguish an item’s context or purpose.
We represent in bold font the names of system commands as well as their
options and arguments. We also represent names of environment variables
in bold font. SQL keywords are represented in italics font. Names of files,
users and similar items are represented in normal (non-bold, non-italic) font.

32 • Database security

3.1 BACKUP AND RECOVERY

The first database management and administration task that we discuss is an
important one that helps support the information security objective of avail-
ability. One risk to the availability of the data in a database is the loss or inac-
cessibility of that data due to a variety of threats that include corruption by
hardware failure, user alteration, or user deletion. For those last two threats
we have to include both cases where the user action was authorized or unau-
thorized. A common solution to such availability problems is to recover or
restore that data to an earlier point in time with a previously obtained backup,
or copy of that data. By doing so, we recover the ability to access and use that
data as we could beforehand.

In addition to an availability solution, we also present these backup and
recovery techniques as a way to create a checkpoint of a database as we walk
through demonstrations in this text. In this manner, you can use the backup
and recovery techniques to restore the data to a previous checkpoint so that
you may repeat certain demonstrations that occur after that checkpoint. You
can also use these techniques to go back to a previous valid set of data in the
event that a demonstration was not carried out properly and altered the data
with a different result than expected.

Notice that to recover the data to a database, we must have previously
obtained a backup of that data. An important administrative task is to backup
the data so that we have one or more known restore points for that data. This
can furthermore include deciding what data to backup, as well as when or
how frequently to issue the backup. In the event of data loss, it is these restore
points that we can refer to when considering which data set to restore. One
consideration is to restore the most recent data, that is, the most recently
backed up data set. Another consideration may be to restore a data set that
we know contains valid data, which may not necessarily be the most recent
backup if we notice or suspect a data corruption occurred before the most
recent backup.

Database backups can exist in a variety of formats. A common format is a
set of files that contain the necessary SQL statements that can insert the data
into the database tables. We can also generate a set of SQL statements that
contain the necessary data definition language (DDL) statements to create
the necessary structures and functionality, such as databases, tables, views,
constraints, procedures, and functions. With these files, we can rerun the
SQL statements to rebuild the backed up database(s) if necessary, as well as to

Database management anD aDministration • 33

replace the data in the backed up databases. An advantage of this backup for-
mat is the ability to use those files on compatible DBMSs. Another advantage
is that we can easily view and edit the database components or data if needed,
before we rebuild the database or restore the data. While other backup for-
mats exist as well, including comma-separated value (CSV) files or XML files,
and although we can manage those formats similarly, we will focus on the
SQL statement format.

In MySQL, Oracle, and MariaDB, we can use the mysqldump command
to backup various parts of a DBMS. For now we will assume a single-session
DBMS environment where at most one user or application is connected to the
DBMS at a given time. The following describes how we can issue backups to
maintain data availability in single-session DBMS environments. If multiple
user or application sessions to the DBMS may exist at the same time, we can
also use these same approaches, but should also take an additional measure
to ensure data integrity of the generated backup. We describe and demon-
strate that additional measure in Chapter 9, “Data Integrity with Concurrent
Access.”

Backup and restore of a specific database

With the simplest form of mysqldump, we can backup one specific database
as shown in Figure 3.1. The generated backup will contain all that database’s
tables, views, constraints, and data (do not be concerned if some of those
terms seem unfamiliar now, as we will explain and demonstrate their purposes
in later chapters).

As an example, Figure 3.1 shows how we can obtain a backup of the
Financial database, which includes its tables and data, into the file financial_
backup.sql. That database and others mentioned in upcoming examples will
be used further when we demonstrate concepts in the following chapters.
The empty box that appears in the last line of Figure 3.1, and also appears in
other figures in the text that portray command line screenshots, represents
the cursor location at which typed input appears, as well as where the typed
input stops (more on that later).

FIGURE 3.1 Using mysqldump to create a backup of a specific database.

34 • Database security

In Figure 3.1, we specify the -u option followed by the username root
for a DBMS administrator user and the -p option to indicate that we will
provide the corresponding password on a separate prompt. You can replace
the username specification as appropriate for your DBMS administrator. We
can optionally provide the password immediately (that is, with no space) after
the -p option to avoid the password prompt and provide the password as an
option, but that is considered less secure and a risk to confidentiality, because
an attacker who lists process information while the backup is in progress may
see the password as part of the command. To reinforce safe practices, we will
omit the password in the command for these examples and require the pass-
word to be provided on a separate prompt.

In this example, we also use the --databases option, (note there are two
hyphens) followed by the name of the database. Even though the --databases
option is not absolutely necessary for a single database backup, and we can just
specify the name of the database, that option does simplify the restore opera-
tion, as we will explain later.

The greater-than (>) symbol in Figure 3.1 represents output redirection to
the file that follows, which is financial_backup.sql in this example. With output
redirection, the generated SQL statements for the backup are written to the
specified output or backup file. If the output file is to be generated in a direc-
tory other than the current working directory, we can prefix the output filename
with the path to output file’s location. Without output redirection, the gener-
ated SQL statements for the backup are sent to the screen by default.

The file mydb_backup.sql generated in Figure 3.1 contains all of the nec-
essary SQL statements to create and populate that database’s tables, views, and
data. With this single backup file, we can easily and quickly restore that data-
base. Using a command-line interface to the DBMS, we have two approaches to
issue such a restore operation with such a backup file. The first approach, shown
in Figure 3.2, involves issuing a mysql command to initiate a client connection
to the DBMS, in the same way we would normally do so to establish a user
connection or session. As with establishing a user session, we must provide a
DBMS administrator username and password prompt specification, which you
can change according to your environment, to carry out the restore operation.

FIGURE 3.2 Restoring a backup created with the --databases option of a single database,
without an existing user session.

Database management anD aDministration • 35

Additionally, we also include at the end of that mysql command in
Figure 3.2 a form of input redirection that indicates we want that session
to read its input from a particular file, in this case the restore information
saved in a previous backup, rather than from the keyboard. We specify input
redirection with the less-than (<) symbol followed by the restore file name.
If the restore file is not in the current working directory, we can prefix the
restore filename with the path to its location. That mysql restore command
then reads the SQL statements one after the other and applies them to the
DBMS, thus recreating the DBMS components and data defined in the
backup file.

Notice that this form of restore requires that the backup was generated
with the --databases option. If that is not the case, then we have to issue
additional steps to restore the backup, namely choose the database in which to
restore and even possibly create that database first, as we do in Section 3.1.3,
“Backup and Restore of Specific Tables.”

Notice that the mysql command given in Figure 3.2 does not require a
DBMS session to already exist for the restore operation. The mysql com-
mand given in Figure 3.2 also does not leave the session open for subse-
quent use, but rather closes the session immediately after restoring from
the input file.

The second approach to restore from a backup file uses an existing
DBMS administrator session. Figure 3.3 illustrates this approach by first
establishing a session for a DBMS administrator. As before, you can replace
the username and password as appropriate for your DBMS administrator.
Once the session is established, we can issue the restore operation with the
SQL SOURCE command followed by the name of the backup file to restore.
If the file to restore resides in a directory other than the current working
directory, we can also prefix the backup file with its path. The SOURCE
command will then read the backup file and issue the file’s SQL statements
one after the other within that session to recreate the backup up content.
For brevity, Figure 3.3 does not show the Enter key pressed and the results
of all the SQL statements in the backup file after they are carried out by the
restore operation.

This second approach to restore can be helpful if we had already estab-
lished a session, say, to carry out some DBMS administrative work before
and/or after the restore operation, such as creating and choosing the data-
base in which to restore if the backup was not created with the --databases
option.

36 • Database security

FIGURE 3.3 Restoring a backup created with the --databases option of a single database,
with an existing user session.

Backup and restore of multiple specific databases

To create a backup of multiple, specific, databases, we must use the --data-
bases option, followed by a list of space-separated database names. Figure 3.4
shows how we may create a backup of the Financial and MedicalCaseStudy
databases into the file financial_medical_backup.sql.

FIGURE 3.4 Using mysqldump to create a backup of multiple specific databases.

To restore the content in a backup that consists of multiple databases,
we use the same techniques as we did to restore a backup of a single
database created with the --databases option shown in Figure 3.2 or
Figure 3.3.

Backup and restore of specific tables

To create a backup of only a specific table within a database, we simply
add to the mysqldump command the database name followed by the name
of the table. Figure 3.5 shows how we can generate a backup of only the
Employee table from the BusinessTLS database into the backup file BTLS_
employee.sql.

Database management anD aDministration • 37

FIGURE 3.5 Using mysqldump to create a backup of a specific table.

If we wish to backup multiple tables within a database, we simply add to
the previous example. After the database name we specify the table names as
a comma-separated list. Figure 3.6 shows how we can generate a backup of
the Employee and HR tables from the BusinessTLSSplitHR database into
the backup file BTLSSHR_employee_hr.sql.

FIGURE 3.6 Using mysqldump to create a backup of specific tables.

Unlike restoring a backup that consists of one or more entire databases,
to restore a backup that consists of only tables, we must specify the database
in which to restore those tables. If the database already exists, then we can
restore the backup with or without a previously established DBMS session.
To restore without an established session, we can use the mysql command as
we did before to restore a database backup. Figure 3.7 shows how we can take
that approach to restore into the existing database BusinessTLSSplitHR the
two tables obtained in the previous backup. Notice that although we specified
to restore into the same database name as was specified for the backup, we
can also specify the name of another existing database in which to restore, say
if we wanted to transfer all or part of one database into another database.

FIGURE 3.7 Restoring tables into an existing database without a previously established DBMS session.

If the database in which to restore does not already exist, we must first
create the database. A common approach is to first establish a DBMS session,
create the database, choose that database to use, then issue the restore oper-
ation. This is an example of carrying out administrative tasks before and/or
after the restore operation as we described for Figure 3.3. As an example, let’s
again restore the Employee and HR tables from the previous backup into the

38 • Database security

database BusinessTLSSplitHR, but this time suppose the database in which
to restore does not already exist. This may be the case, for example, if we
deleted that database after creating the backup, are restoring the backup into
a fresh DBMS, or are restoring into another new database. Let’s suppose we
want to restore the backed up Employee and HR tables into a new database
named EmployeeData.

In Figure 3.8, we first establish a DBMS session like we did before. We
then create the database with the CREATE DATABASE statement. Next,
with the USE statement we choose that database to be the one in which sub-
sequent operations will occur. We then issue the SOURCE command and
the backup filename with optional path. Like before, we do not show Enter
pressed at the end of the SOURCE command for brevity. Note that we could
also use this approach to restore into an existing database by just omitting the
CREATE DATABASE statement.

FIGURE 3.8 Restoring tables into a database that does not already exist.

Backup of users, privileges, and other components

In addition to user-created databases, a DBMS may contain other compo-
nents that are necessary for an organization or environment. One such set of
components involve database user accounts and associated privileges. These
components are maintained and stored by the DBMS within internal data-
bases and tables that are not by default included with the backup approaches
described thus far. While we could specifically name those internal databases
in a list similar to the mysqldump command given in Figure 3.4, we must be
careful to specify all of the necessary internal databases to include all of their
tables and data that are required. To compound this matter, DBMSs typically
have varying names for internal databases and tables, so for example, MySQL,
MariaDB, and Oracle each manage user accounts with internal databases and
tables that have different names.

Fortunately, we can easily include user account and privilege information,
as well as other DBMS internals, in a backup with the --all-databases option
to mysqldump. Figure 3.9 shows how we can issue a backup of all user and

Database management anD aDministration • 39

DBMS internal databases to the backup alldbs_backup.sql, where “alldbs”
refers to “all databases.”

FIGURE 3.9 Using mysqldump to create a backup of all user and DBMS databases and
tables, including user account information.

A database may also contain stored procedures or functions, also known
as routines. In later chapters we use stored procedures and functions as solu-
tions to certain data confidentiality and integrity problems. These routines are
normally not included in a backup that we create, but we can specify that we
want to include them with the --routines option in a mysqldump command.
Figure 3.10 shows how we can create an even more comprehensive backup
of all databases, with their tables, views, data, stored procedures and stored
functions, into the file dbms_backup.sql.

FIGURE 3.10 Using mysqldump to create a backup of all databases,
user account information, and stored routines.

Deciding what to backup

While a backup of the entire DBMS or of only select components is useful
as an availability solution, we do have considerations among which approach
to employ in a given situation. A backup of the entire DBMS is an easy
and safe way to ensure we have all DBMS content, so that we can restore
the entire DBMS as it existed at the point of that backup. Such a complete
backup is especially helpful, because while we may often consider which
organizational or user database(s) or table(s) to backup, we may not as easily
consider other vital components such as database users, privileges, or stored
routines. As such, the organization’s data may be only part of the necessary
operational components. If we inadvertently omit other vital components
such as users or privileges in a backup, after a restore operation we may have
security risks with availability (by a user not being able to access the data to
which they should have the ability because their account is not available), or
with confidentiality (by quickly allowing “open” access for any user, whether

40 • Database security

authorized or unauthorized), until we accurately recreate those users and
privileges as they existed previously. Add to this consideration that certain
components, such as user and privileges information, is stored in certain
internal databases and tables that vary among DBMSs, so unless we are
certain which of those internal databases and tables are necessary for func-
tionality, we may wish to consider a full DBMS backup of all databases and
routines.

While a full DBMS backup can be a reliable solution for availability, for
DBMSs with a lot of content, the file size of a full DBMS backup may be large.
If file size is a consideration, we may wish to create a smaller backup of only
a specific database, a small set of databases, or only certain tables. We may
also wish to use this approach if we will share a backup file with another party
that should only have access to specific databases or tables. That way we can
include only those databases or tables in the backup and not risk confidential-
ity by sharing a complete DBMS backup that happens to include content the
other party is unauthorized to access. We could even employ a backup solu-
tion that uses the best of both approaches, such as a complete DBMS backup,
say, every day, and of specific databases or tables more frequently, such as
every hour. This may be particularly attractive if certain components, such as
users and privileges, change infrequently, but user data in other databases or
tables change more frequently.

3.2 USER ACCOUNT SECURITY CONFIGURATIONS

To better secure database user accounts, a DBMS administrator can employ
a variety of security controls that manage user accounts.

Password expiration

One common control is password expiration, or the length of time that a
user’s password will remain in effect before the user is required to change
that password. This control helps protect a user’s account against unau-
thorized access in scenarios such as unauthorized use of an old password
that has been compromised without the user’s knowledge. By requiring
the user to eventually change that password, an attacker will no longer

Database management anD aDministration • 41

be able to use that password to gain unauthorized access. Password expi-
ration can also prevent potential future unauthorized use of a password
that is in the process of being compromised, such as when an attacker
issues a brute force password attack. For example, if an attacker needs
on average one year to brute force compromise a user’s password, and
the user’s password expires in 120 days, after that password expires and
the user puts a second password into effect, should the attacker compro-
mise the first password, it is no longer used and therefore of no value
to the attacker. Essentially, password expiration reduces or closes the
window of opportunity by which an attack can compromise and use the
password for unauthorized access.

Password expiration values exist for each user as well as a system default.
Each user can have a unique expiration value, and that value is initially the
system default in effect when the user account is created. After a user account
is created, we can change the expiration value for that specific user without
affecting the expiration values of other users.

To see the number of days for which a specific user account can use a
password without changing the password, we can issue the SELECT state-
ment whose general syntax is given in Figure 3.11 for MySQL or MariaDB
DBMSs. Here we would replace username with the user name of the account,
and hostname for an optional host specification for that account. We also
specify single straight quotes (or alternatively left-quotes) around the user-
name and hostname for reasons that we explain in Chapter 4. Note that smart
quotes are not recognized as quotes in many DBMSs and may generate a
syntax error if used.

SELECT password_lifetime FROM mysql.user
WHERE user='username' AND host='hostname';

FIGURE 3.11 General syntax to show the password expiration for a specific user
in MySQL or MariaDB.

This chapter contains some examples with general syntax and not with
specific user accounts. Rather, these concepts for user password and account
management are meant as a reference for now, and when we later create
user accounts, you can refer back to these concepts and apply them to those
accounts (or other accounts that you create) if you wish.

42 • Database security

To change the password expiration interval for a specific user, we can
issue the statement whose general syntax is given in Figure 3.12. We would
replace ndays with the number of days in the expiration interval, and again
replace username with the user name of the account, and hostname for an
optional host specification for that account.

UPDATE mysql.user SET password_lifetime=ndays

WHERE user='username' AND host='hostname';
FIGURE 3.12 General syntax to change the password expiration for a specific user

in MySQL or MariaDB.

The default password expiration can vary across DBMSs. MySQL and
MariaDB typically have a default of 0 days, which means no password expi-
ration. To confirm the default expiration interval in days for those DBMSs,
we can examine the default_password_lifetime global variable value, as
demonstrated in Figure 3.13.

FIGURE 3.13 Showing the default password expiration interval in MySQL or MariaDB.

We can change the default password expiration in a MySQL or MariaDB
DBMS either by changing the DBMS server’s configuration file or by set-
ting the default_password_lifetime global variable within the DBMS.
In Figure 3.14, we show how a MySQL or MariaDB DBMS administrator can
redefine that global variable to set the default password expiration at 120 days,
with the SET statement. We then show the new default password expiration
with the SHOW statement.

FIGURE 3.14 Setting the default password expiration interval to 120 days in MySQL or MariaDB.

Database management anD aDministration • 43

Oracle often installs with a password expiration default of 180 days. To
confirm the default password expiration for an Oracle DBMS, we can issue a
SELECT statement on one of the DBMS internal tables as shown in Figure 3.15.

FIGURE 3.15 Showing the default password expiration interval in Oracle.

If we wish to change the default password expiration in an Oracle DBMS,
we can issue an ALTER statement to change the DBMS internal tables.
Figure 3.16 shows how we can specify no password expiration in Oracle.

FIGURE 3.16 Setting no password expiration in Oracle.

Notice that no password expiration introduces a security risk with confi-
dentiality. Figure 3.17 shows how we can change the default password expira-
tion in Oracle to 120 days.

FIGURE 3.17 Setting the default password expiration interval to 120 days in Oracle.

Notice that a default password expiration value applies only to user
accounts created after that value is put into effect and does not affect user
accounts that already exist. Each user account contains information that
includes the time interval in which their current password will expire. To
modify the password expiration for an existing account, we have to change
that account’s password expiration as we discuss next.

44 • Database security

A DBMS administrator can set the number of days in which a given user’s
password will continue to be valid before expiring. To set the number of
days before expiration in MySQL or MariaDB, a DBMS administrator can
issue a form of the ALTER USER statement, whose general syntax in given
in Figure 3.18. Here we would replace username with the username of the
account, along with optional hostname restriction, and ndays with the number
of days until password expiration.

ALTER USER 'username' PASSWORD EXPIRE INTERVAL ndays DAY;
FIGURE 3.18 General syntax to set the password expiration interval to a given number of

days for a given user in MySQL and MariaDB.

A DBMS administrator can also immediately expire a password for a given
user account. This action may be a decision if the user’s password has a low
suspicion to be compromised, and as a precautionary measure we will simply
allow the user to continue using their account but with a new password. To
immediately expire an account’s password in MySQL, MariaDB, as well as
Oracle, a DBMS administrator can issue the ALTER USER statement whose
general syntax is shown in Figure 3.19. Here we would replace username with
the username of the account, along with optional hostname restriction,

ALTER USER 'username' PASSWORD EXPIRE;
FIGURE 3.19 General syntax to immediately expire a user’s password in

MySQL, MariaDB, and Oracle.

If a user’s password expires—either by reaching the number of days since
setting the current password or by an immediate expire by a DBMS admin-
istrator—the user password must be reset before the user can regain their
normal access with that account. Either the user or a DBMS administrator
can reset the password for an expired account with the ALTER USER state-
ment, as described in Chapter 4, “Database User Accounts.” By default, the
user can still log into their database account with an expired password, but
has extremely limited access. In that situation, the user still has the ability to
log change their password so they can relogin in and regain normal control of
their account.

If we wish to have no password expiration, a DBMS administrator can issue
the ALTER USER statement, whose general syntax is shown in Figure 3.20.
Remember that while no password expiration may be a user convenience, it
introduces security risks with user account confidentiality.

Database management anD aDministration • 45

ALTER USER 'username' PASSWORD EXPIRE NEVER;

FIGURE 3.20 General syntax to never expire a user’s password in MySQL, MariaDB and Oracle.

Disabling/enabling user accounts

We may have situations in which a user account should be disabled such that
no one can log into that account but it is not necessarily removed. This may be
a temporary action, say, for when a user account is suspected to be compro-
mised and for security purposes is not allowed to be used until the matter is
assessed. Should the compromise turn out to be true, we can keep the account
disabled until the breach is assessed, or however else is specified in the organ-
ization’s security policy. In other situations, the disabling of an account may
be a longer term solution, say because the user associated with the account
is no longer with the organization, but for various functional or availability
needs we still need the presence of that account so that, say, certain data or
resources are still accessible. In both cases, we do not want anyone logging
into that account for the time being.

To disable (or lock) a user’s account in MySQL, MariaDB, and Oracle so
that logins to that account are denied, we can issue an ALTER USER state-
ment whose general syntax is shown in Figure 3.21. Here we replace user-
name with the user and any applicable hostname.

ALTER USER 'username' ACCOUNT LOCK;

FIGURE 3.21 General syntax to disable or lock a user account in MySQL, MariaDB, and Oracle.

When applicable, we can reenable a disabled user account, so that log-
ins by that user are now permitted. In one of the previous scenarios. where
we disabled a user account that was suspected of compromise, suppose the
assessment yielded a false alarm. In that case, we can reenable the user’s
account so the user can access the DBMS as before. To reenable (or unlock)
a user’s account, we can also issue an ALTER USER statement, whose general
syntax is given in Figure 3.22.

ALTER USER 'username' ACCOUNT UNLOCK;

FIGURE 3.22 General syntax to reenable or unlock a user account in MySQL, MariaDB and Oracle.

A DBMS may have other security controls for passwords and user accounts,
and while these can vary among DBMSs, we introduced some common ones

46 • Database security

in this chapter. We continue in Chapter 4, “Database User Accounts,” with
other security controls for user accounts, such as with host-restricted access,
which limits the system(s) by which a user account can access the DBMS.

3.3 SUMMARY

In this chapter, we introduced some tasks by which a database administrator
can provide or maintain some of the security objectives with availability and
confidentiality. While not an exhaustive discussion of administrative concepts,
we described some of the important ones with backups, restores, password
expiration, and account disabling. The concept of backups and restore can
be especially useful as we follow along with the hands-on demonstrations of
security concepts in upcoming chapters and wish to repeat them.

C H A P T E R 4
database user aCCounts

In this chapter, we describe the concept of database users and show how to
manage them using SQL. While many DBMSs also provide a graphical user
interface (GUI), the SQL approach is beneficial for many reasons. First, when
issuing a task through a GUI, we often have limited features compared to issu-
ing the task through SQL. Secondly, SQL is very uniform across DBMS, while
GUIs vary in appearance and design not only across DBMS, but also across
versions of a given DBMS. So understanding the SQL approach is not only
more powerful, but it allows us to carry out an operation in a more uniform
manner across types and versions of DBMSs.

We consider a database user to be a person or agent (such as an appli-
cation or system service) that is authorized to interact with a database. A
database user can be specified by a database username, and is part of the
credential a database user provides to log into or gain access to a database.
The database username can be defined in many ways, such as based on the
user’s actual name and/or a number to help make the username unique. The
other part of the credential is an optional password that the user provides for
authentication. A database user can also be specified with a database user ID,
which is a unique identifier assigned to a user when the database user account
is created. The database username or user ID is how we will specify which
user is allowed or disallowed a type of data access.

The manner in which a particular database user can interact with the data-
base’s data is defined by the user’s needs or responsibilities. As an example,
we may have one user that requires the capability to add, retrieve, and change
certain data. We may also have another user that does not require any of that
capability, in which case that user should be denied any access to that data.

48 • Database security

4.1. CREATING AND REMOVING DATABASE USER
ACCOUNTS

Before we can go further with discussing how to allow or disallow certain
access to data, we need some database users. So, let’s first explain how to cre-
ate database user accounts. To cover a broad range of use, we will describe
how to carry out this task as well as other database security tasks with SQL
directly in the MySQL, MariaDB, and Oracle DBMSs. While the figures
indicate use of MySQL DBMS, the exact same SQL statements will apply to
MariaDB and Oracle unless otherwise noted.

In this scenario, we will create database user accounts for the employees
within a business organization. We will choose the database username of an
employee to be that employee’s last name in lowercase, which in this scenario
happens to be unique. In general, if employee last names were not unique,
we would have to define the database username on something that is unique,
such as combining the last name with first name and/or a number.

When creating a database user account, we can optionally specify an
authentication password. To reinforce this form of security, we will specify a
password, although for ease of demonstration we will use passwords that are
easy to remember for each user. Keep in mind that in practice, we would want
to use stronger passwords. Figure 4.1 gives the usernames and passwords for
the database accounts in our business scenario.

FIGURE 4.1 Database usernames and the corresponding authentication password
for our business scenario.

Database user accounts • 49

The SQL CREATE USER statement can be used to create database
accounts. The basic syntax for the CREATE USER statement with the MySQL,
MariaDB, and Oracle DBMSs is given in Figure 4.2.

CREATE USER 'username'[@'hostname'] [IDENTIFIED BY 'password'];

FIGURE 4.2. Basic SQL syntax to create a database user account.

To understand this command representation, the italic characters are SQL
symbols or keywords that are specified exactly as is. The bold content repre-
sents where we fill in the specifications for our specific needs, such as user-
name, hostname and password for this statement. The content within square
brackets is optional and can be omitted or specified depending on whether we
wish to leverage that particular feature.

The easiest SQL statement to create a user account for user roberts is one
that specifies only the username, as shown in Figure 4.3, where we create a
database account for user roberts with no password. This command consists
of the SQL keywords CREATE USER followed by the username for the new
account. The username does not require enclosing quotes if the username
consists of only alphanumeric or underscore characters. If the username does
contain hyphens (-), periods (.), or other special symbols, the entire username
must be enclosed within quotes.

FIGURE 4.3 Creating a user account with no password.

Tip: The CREATE USER statement must be issued by the database root account
or some other database administrative account that has been given the capability
to issue those statements.

In Figure 4.3, we did enclose the username with straight single quotes
('), although technically quotes were not required in this specific example.
Even though enclosing quotes may not always be required for a username
(and as we see later, for a hostname), it is common practice to always use
enclosing quotes for a predictable and uniform appearance, as well as to

50 • Database security

avoid surprise errors in situations when quotes are required. As such, the
examples in this text will always enclose the username (and hostname). Most
DBMSs and users prefer the use of straight single quotes when quotes are
necessary, and that is the convention we follow. However, many DBMSs
also allow use of straight double (") or back (') quotes in situations where
quotes are required. No matter which form of quote you use, the form must
be the same for each pair of matching quotes.

Tip: Be careful to use straight single or double quotes with SQL. Smart quotes
are not recognized as single or double quotes in many DBMSs and may generate
a syntax error if used.

That database user can then log into the database by specifying only the
username with the SQL command shown in Figure 4.4.1 Here the mysql
command includes the -u option, followed by one or more spaces and the
username. The -u option specifies that the username is to follow next.

FIGURE 4.4 Logging into a database user account with no password.

While a simple way to create a database account, note that this approach does not
involve any security measures—such as use of a password—with that account.
Because we are reinforcing database security concepts, we should involve such
security measures. Let’s now incorporate a password for that account.

To add (as well as change) a password to an existing database user account,
we can use the SQL ALTER USER statement, followed by the username of the
account. This statement also contains the IDENTIFIED BY keywords which
allow us to specify a security control for the account. All DBMSs provide a
password-based control, and some DBMSs may also provide other security
controls. For a password-based control, we follow those keywords with the
password, enclosed in single quotes, as shown in Figure 4.5.

FIGURE 4.5 Setting (or changing) a password for a database user account.

1In an Oracle DBMS, after creating the account for 'username', we must then issue “GRANT CREATE SESSION
TO 'username'” to allow that account to log into the DBMS. MySQL and MariaDB do not require this extra step.

Database user accounts • 51

Now if a login attempt is made to the account roberts without a password,
the login is denied, as shown in Figure 4.6.

FIGURE 4.6 Failed login attempt without a password.

In order to log into the account now, we have to specify a password
in one of two ways. One way involves specifying the password as part of
the login command. We can do so with the mysql command we previously
attempted, but also with the -p option immediately followed by the pass-
word (that is, no spaces between the option and password), as shown in
Figure 4.7.

FIGURE 4.7 Logging into a database user account with a password.

While the database account for roberts is now password-protected, this
login approach does raise a new security concern. This concern stems from
the inclusion of the password as part of the login command. On some systems,
a user may be able to issue the operating system to generate a full process or
command listing that would show the mysql command and its options while
the mysql session is running. If the operating system does show all of the pro-
gram or command options in plaintext, then the user account password may
be compromised. More recently however, some operating systems will mask
out passwords (such as with x’s or other synbols) that are part of a command
or process listing, so that particular password vulnerability would not exist in
that case.

The second way in which we can specify a password when logging in is
similar to the first method, but does not include the password itself as part of
the command. Here we issue the same command but omit the password itself
after the -p option, as shown in Figure 4.8. If nothing immediately follows

52 • Database security

the -p option, the DBMS will prompt the user for the password. This slight
change to the login command yields two security benefits. First, as with most
password prompts, the password itself will not be reflected on the screen as
it is typed in, for security purposes pertaining to shoulder-surfing. Secondly,
because the password is not included within the command itself, the password
will not be revealed by a command or process listing, whether or not the oper-
ating system masks the password in the listing.

FIGURE 4.8 Logging in a database user account with a prompted password.

We have other mysql options that we may provide when logging in, such
as -D followed by a space and name of a database. The effect is that upon
logging in, we do not have to specify the database name to access its compo-
nents, as if we had chosen the database with the SQL USE statement. We will
demonstrate this option later with our next scenario.

For the next database user account, let’s see how we can create the
account and set the password in one command. This approach combines the
two commands we issued to separately create the account and set the pass-
word. We specify the CREATE USER statement followed by the username for
the new account. We then add the IDENTIFIED BY keywords followed by
the password enclosed with single quotes, as shown in Figure 4.9. As before,
the username does not require surrounding quotes if the username consists of
only alphanumeric or underscore characters. The password must be enclosed
within quotes regardless.

FIGURE 4.9 Creating a database user account with a password.

There may be times when we want to remove a database user account.
For example, if we did not create the account properly, we may find it easier
to remove the account and start over. Figure 4.10 gives the syntax to remove
a particular database user’s account.

DROP 'user'[@'hostname'];
FIGURE 4.10 General SQL syntax to remove a database user account.

Database user accounts • 53

The [@'hostname'] portion of the statement is optional (we did not use it
up to this point), but we incorporate that later in this chapter.

4.2. LISTING USER ACCOUNTS

Before we create more database users, let’s now explain how to list the database
accounts that we currently have. Doing so involves our familiar SQL SELECT
to retrieve certain data from a table that holds user account related details.
These tables are typically DBMS-specific, so the exact statement may vary
across DBMSs. In the MySQL DBMS, to show a simple listing of users and
the hosts from where they can log in, we can issue the SELECT statement
shown in Figure 4.11. In addition to listing the users that we create, we also see
some other entries for the default DBMS root and administrative accounts. You
will notice a percent sign (%) in the host column for users garrett and roberts
because we created those accounts with no host restriction. This means that one
can log into those database user accounts from any system or host.

FIGURE 4.11 Listing database users and their hosts in MYSQL.</fc>

In the Oracle DBMS, we can similarly obtain a list of database user
account names and the hosts from which they login by using the SQL state-
ment shown in Figure 4.12. Figure 4.12 shows only the accounts we created
and not any Oracle system accounts.

54 • Database security

FIGURE 4.12 Listing database users and their hosts in Oracle.

Chapter 5 and Chapter 6 follow up with more advanced listings of
MySQL, MariaDB, and Oracle database user accounts combined with secu-
rity controls.

4.3 HOST-RESTRICTED ACCOUNTS

For enhanced security, we can create database user accounts with additional
specifications and settings. As an example, we can restrict which system(s) or
host(s) a user must be on in order to log into the database system. The first
two account creations had no such restriction, so a user on any system may log
into the database with username roberts or garrett.

If we wish to restrict which systems can be used to log into a particu-
lar account, we can combine the username with a hostname from which the
login attempt must occur in order to be successful. Any login attempt to that
account from another system is automatically denied. We combine the user-
name and hostname with an at (@) symbol in between them and no added
spaces, similar to that of an email address format. In Figure 4.13, we show
how to create the account for chu and restrict logins to that account from only
the localhost, or system running the DBMS.

FIGURE 4.13 Creating a database user account with a password and host restriction.

As with usernames, if the hostname contains special symbols such as a
hyphen (-) or percent sign (%), the entire hostname must be enclosed within
a set of quotes. Note that while periods in a username were considered a
special symbol, periods in a hostname are not considered a special symbol.

Database user accounts • 55

So, if we specify a hostname with one or more periods, we are not required to
enclose the hostname within quotes. Furthermore, we can also specify a sys-
tem with its network or IP address rather than hostname. In a similar manner,
we do not have to enclose an IPv4 address within quotes because of the peri-
ods involved. However, we do have to enclose an IPv6 address within quotes
because a semicolon (:) is considered a special character.

Even though quotes were not required for the hostname in Figure 4.13,
we provided quotes anyway because as with usernames, it is good practice to
always enclose hostnames within a set of quotes for a predictable and uniform
appearance, as well as to avoid the omission of quotes in situations where
required.

As an important note, we do not enclose both the username and hostname
within one set of quotes. Even though an error may not be generated, doing
so has the effect of specifying the username as everything within that pair of
quotes, including the at symbol (@) and hostname. The hostname portion will
be assumed nonexistent.

In cases where we want to allow a user to log into the DBMS from multi-
ple hostnames or IP addresses, we can specify multiple user accounts, one for
each hostname or IP address. For example, if we want to allow user donnelly
to log in from the DBMS system itself as well as the IPv4 address 192.168.2.8,
we create two user@hostname accounts or instances for donnelly, as shown
in Figure 4.14.

FIGURE 4.14 Creating a database user account with access from multiple systems.

Note that because each user@hostname account or instance is associated
with its own password, we can either assign the same password to all instances
or accounts for a particular user, or assign different passwords for each of
those instances or accounts. Figure 4.1 shows different passwords for each of
the multiple accounts that users donnelly and sanford have.

While using the same password for multiple user accounts may be eas-
ier to remember from a user perspective, that can introduce a security vul-
nerability. If that password becomes compromised, an attacker can use that

56 • Database security

password among all of those user accounts and thus access the database sys-
tem from all of the hosts by which that user is authorized. Specifying different
passwords for a user’s set of accounts may be more demanding from a user
perspective to remember all of those passwords, but can add a greater degree
of security. Namely, if one of those passwords becomes compromised, only
the account associated with that password is vulnerable. An attacker can then
use that password to gain access only when logging in from the host(s) asso-
ciated with that particular account. Because the other accounts for that user
have a different password, they are still safe. As a result, the attack surface can
be minimized in the event a password becomes compromised. For example, if
the password for donnelly@localhost becomes compromised, an attacker can
only use that password to gain access when logging in from the DBMS system.
If attempting to log in from 192.168.2.8, that account is secured by another
password and so remains safe.

To help reduce the number of user accounts or instances involved when
allowing a user to log in from multiple specific systems, the SQL wildcard
characters can play a role with specifying multiple hostnames or IP addresses.
This is particularly helpful if the set of allowable hostnames or addresses fall
within a certain range or network. To restrict an account to log in from a
range of hostnames or network addresses, we can specify the range by using
a SQL single character underscore (_) wildcard symbol to represent which
single character can vary. For example, to represent the IPv4 address range
192.168.2.100 to 192.168.2.109, we can use an underscore (_) in place of the
last digit, as shown in Figure 4.15.

FIGURE 4.15 Creating a database user account with access from a range of IPv4 addresses.

Note that because we created only this account for gardner, we have
effectively restricted that user to log into the DBMS from only systems that
have an IP address within the range 192.168.2.100 to 192.168.2.109, and not
from the DBMS system itself (unless for some reason the DBMS maps the
name localhost to an address within that range).

Database user accounts • 57

To specify a larger hostname or IP address range, we can use multiple
consecutive single character wildcards. But we have to consider that because
each wildcard symbol represents one character that can vary, a given number
of single character wildcards matches against that many characters. For exam-
ple, a specification of two consecutive single wildcard characters will match
against exactly two characters.

To represent a multiple character wildcard match against any number
of characters, we can use the SQL multiple character wildcard percent sign
(%) symbol. As an example, suppose we want to allow user sanford to have
access from the DBMS system itself as well as from any system within the
192.168.2 network (that is, any system in the IPv4 address range 192.168.2.0
to 192.168.2.255). We can specify % to match any value for the fourth number
in the IP address, as shown in Figure 4.16.

FIGURE 4.16 Creating a database user account with access from a host and network.

A multiple character wildcard is also common with a hostname specifi-
cation that involves an entire network domain or subdomain. For example, if
we wanted to allow access from any system in the subdomain x.y.z, we could
specify ‘x.y.z.%’ for the hostname.

As an important note, when creating a user account, specifying a wildcard
for the hostname such as ‘username’@’%’ has the same effect as specifying
‘username’ alone. In both cases, there is no restriction on the host or system
in which the login attempt occurs.

Now that all user accounts for the business scenario have been cre-
ated, the listing of those usernames and their hosts should appear like
that in Figure 4.17 for MySQL and MariaDB, and in Figure 4.18 for
Oracle.

58 • Database security

FIGURE 4.17 Showing the complete list of database users and their hosts in MYSQL.

FIGURE 4.18 Showing the complete list of database users and their hosts in Oracle.

4.4 SUMMARY

The user accounts that we created allows one to log into the overall DBMS,
which itself can contain one or more databases, and each database can have
one or more tables. The next chapter describes how we can manage a user’s
access to these databases and their table contents once the user logs into the
DBMS.

C H A P T E R 5
database PrIvIleges

We touched on the topic of privileges in Chapter 4, where we created a data-
base user in Oracle and had to assign the the CREATE SESSION privilege so
that user had the ability to login into the DBMS. In this chapter we explore
other privileges that can manage what data a user can access as well as what
type(s) of access a user can issue on data.

A comprehensive use of security in an organizational environment must
consider the various contexts of data, who or what will access the data, and
how they are allowed to access the data. The concept of privileges is a way
to define and manage what data may be accessed by a user, as well as what
types of accesses that user is allowed to issue on that data. Such practices can
implement higher security compared to approaches that give all users the
same level of access to data.

For example, if we were to say that certain data is readable in general,
say to all employees, then we are permitting any employee to read the data.
Now consider if that data should be readable to only certain employees (such
as an employee’s personal information, which may only be readable to that
employee and a human resource representative). Then we want a certain
type of access to that data for some employees (such as “read-write” access)
and other types of access for other employees (such as “no access”). The use
of privileges allows us to employ detailed specifications that involve which
agents may access a given piece of data, as well as how a given agent may
access the data. The latter allows us to define the type of access an agent is
allowed to issue, such as whether the agent can only retrieve or see the given
data, whether the agent can view and modify that data, or whether that agent
has no access to the data whatsoever.

Let’s demonstrate this idea with the following business scenario that
has data for employees as well as company budgets. Figure 5.1 shows the

60 • Database security

normalized tables structures and data. We have these tables provided in a
database named BusinessTLS, where TLS is an abbreviation for table-level
security, representing the level or means by which we are going to manage
data access for this scenario at first.

Employee (EmpID,FName,LName,Title,Office,Address,SSN,DOB,Salary)

Budget (BudgetID,Year,Quarter,Sales,Expenses)

Employee

EmpID FName LName Title Office
E01 Tom Roberts CEO A110

E02 Alison Garrett CFO A118

E03 Betty Chu HR Director A203 ...

E04 Cindy Donnelly Sales Director B116

E05 Alex Gardner Sales Assoc B118

E06 Miguel Sanford CIO A202

Employee (cont)

Address SSN DOB Salary
212 Orchid Ave 000-404-1234 03/01/1957 175000

1234 Brown St 000-145-0909 05/25/1966 140000

... 67 Tulip Lane 000-223-7888 10/13/1973 80000

101 Harrison Ave 000-132-5673 02/17/1970 60000

73 East Liberty 000-454-9654 10/16/1982 48000

43 Falcon Dr 000-065-7788 02/15/1967 16000

Budget

BudgetID Year Quarter Sales Expenses
B01 2021 1 1600000 1450000

B02 2021 2 1700000 1460000

B03 2021 3 1550000 1380000

B04 2021 4 1760000 1430000

B05 2022 1 1710000 1395000

B06 2022 2 1775000 1435000

B07 2022 3 1920000 1520000

B08 2022 4 1830000 1480000

FIGURE 5.1 Table definitions and table data for our business scenario.

Database Privileges • 61

Now that we have a database with data and user accounts created in
Chapter 4, we can manage how these users can access this data. Because
data is organized in a relational DBMS with databases, tables, and columns
and rows, we can manage access at those levels with various strategies. At
the highest level, the database-level, we can manage as a single unit how a
user may access all of the data within that database. At the next lower level,
the table-level, we can manage in a single unit how a user may access all of
the data within a given table of a database. The table-level represents the
largest granularity or unit by which we can manage a user’s type(s) of access.
The smallest levels of granularity are the column-level and row-level, where
we can manage user access to specific columns or rows, respectively. We
will start with an overview of privileges with database-level granularity.

5.1 OVERVIEW OF PRIVILEGES AND DATABASE-LEVEL
PRIVILEGES

Even though a database user has an account and can log into the DBMS, that
does not mean that user suddenly has access to the databases – and their data -
contained within that DBMS. Unless otherwise specified when a database user
account is created, a user’s access to database tables is by default disallowed
(or default secure) in most DBMSs. The concept of default secure is where an
asset (such as that table) has strong security and very limited or no access by
default or when created, and then we assign the required access to the asset.

Figure 5.2 illustrates the failed attempt that user roberts would experi-
ence at this time if, after logging into the DBMS, roberts attempts to choose
the BusinessTLS database itself with the SQL USE statement or attempts
to directly access a component of the database such as the BusinessTLS.
Employee table with the SQL SELECT statement.

FIGURE 5.2 A default secure database that is inaccessible after login.

Should roberts alternatively attempt to choose the database as part of the
login process, such as with the MySQL -D option, a failed attempt will simi-
larly result, as shown in Figure 5.3.

62 • Database security

FIGURE 5.3 A default secure database that is inaccessible during login.

Access to a database must first be assigned or granted before a user can
access that database. To allow a database user to access our BusinessTLS data-
base or its data, we can assign one or more privileges with the SQL GRANT
statement. The GRANT statement covers a broad range of privileges that can
simply or comprehensively manage a user’s access to a database, its tables, its
columns, and so on. The privileges that we commonly manage and assign are
shown in Table 5.1, with the SQL keyword(s) that represents the privilege
given along with a description of the privilege.

SQL Privilege/
Keyword Description of Privilege

ALL allows a user to have all of the following privileges

SELECT allows a user to retrieve data from the given table(s) with the SQL
SELECT statement

UPDATE allows a user to modify existing data in the given table(s) with the SQL
UPDATE statement

INSERT allows a user to add rows to the given table(s) with the SQL INSERT
statement

DELETE allows a user to remove rows from the given table(s) with the SQL
DELETE statement

CREATE allows a user to create new tables and databases with the SQL CREATE
statement

DROP allows a user to remove entire tables and databases with the SQL
DROP statement

TABLE 5.1 Common SQL privileges.

To obtain an overall understanding of the SQL GRANT statement, let’s
first examine its general form, and we will expand into more intricate use.
Figure 5.4 shows the general syntax of the SQL GRANT statement in the
MySQL, MariaDB, and Oracle DBMSs with use on databases and tables. As
before, the SQL keywords are capitalized and bold, and are specified exactly
as is. Italicized content represents where we fill in our specifications, and con-
tent within square brackets is optional.

Database Privileges • 63

GRANT privilege(s)

ON [database(s).]table(s)

TO 'username'[@'hostname'];

FIGURE 5.4 General syntax of SQL GRANT statement to assign privileges to database users.

Taking a look at the clauses of the GRANT statement in Figure 5.4, follow-
ing the SQL keyword GRANT, we specify the privilege(s) we want to manage
by their SQL keyword. We can specify one privilege, or multiple privileges, by
comma-separating them. In the next clause, after the keyword ON we specify
the database and table(s) that we want the statement to manage. A database
name is optional if we already have chosen the necessary database with the
SQL USE statement or when logging in with the -D option. We can specify a
single database by its name or all databases with the * wildcard. Likewise, we
can specify a single table by its name or all tables within the database(s) with
an * wildcard. To specify multiple databases or tables by name, we can issue
separate GRANT statements with each database or table. Finally, in the third
clause after the SQL keyword TO we specify the database username (with
applicable hostname if necessary) that we have previously created.

As with the CREATE USER statement, a GRANT statement must be
issued by the database root account or some other database administrative
account. A database administrative account is one that has the privileges to
issue those statements. Later we will cover as well as demonstrate that such
administrative access as a type of privilege itself!

Focusing first at the database-level, Figure 5.5 shows how we can grant user
roberts all access to the database BusinessTLS.1 The keyword PRIVILEGES
is optional in most recent versions of MySQL, MariaDB and Oracle but is
included here for completeness, to highlight the context of the command, as
well as to maintain uniformity with other documentation resources. We also
split the clauses onto their own lines to help emphasize the parts of the state-
ment, although we could have certainly issued the statement with a single line.

Tip: the keyword PRIVILEGES is optional in most recent versions of MySQL,
MariaDB, and Oracle.

1While the use of a .* wildcard in this manner can be viewed as table-level management that happens to involve all
tables, we will consider it database-level management because it affects all tables in a database at once.

64 • Database security

FIGURE 5.5 Granting database access.

Now user roberts can successfully access the database and its compo-
nents. This example demonstrates the simplest form of granting database
privileges, where we allow the user all types of access (noted by the keyword
ALL) to all components within the database (noted by the .*). This means
we granted roberts the capability to retrieve, as well as to add, update, or
delete components within the database, which includes the data as well as
entire tables themselves. Though easy to grant access in this manner, such
open database access, especially to casual or end users can pose a huge
security vulnerability in an operational environment, and we look at that
very shortly.

Now that we have begun to work with privileges, let’s take a moment
to mention that traditionally after the granting (or as we will later dis-
cuss, removing with the SQL REVOKE keyword) of a privilege, tvhe SQL
FLUSH PRIVILEGES statement was subsequently required to ensure the
previously issued privilege changes were recognized by the DBMS and
took effect. However, in recent versions of MySQL, MariaDB, and Oracle
DBMSs, FLUSH PRIVILEGES has become optional when following
GRANT or REVOKE statements, as those statements automatically flush
their changes so as to be immediately recognized by the DBMS. So, issuing
a separate command to flush privileges in that case is no longer required.
But many tutorials and documentation sources may still issue a FLUSH
PRIVILEGES just to be sure the changes take effect. There is no adverse
effect of flushing privileges if they have already been flushed automatically
or by the user, so if you wish to issue a flushing of privileges after granting
or revoking a privilege, you can safely do so. Figure 5.6 shows how we could
have issued the previous grant example (this time alternatively expressed in
a single line) with a subsequent flushing of privileges. From here onward,
we will not issue a flushing of privileges in conjunction with the GRANT
or REVOKE statements for brevity; however, you may issue that yourself
if you wish.

Database Privileges • 65

FIGURE 5.6 Granting database access and flushing privileges.

Even though flushing of privileges is typically optional with GRANT or
REVOKE statements, flushing or privileges is usually required with changes
made directly to the internal DBMS tables that store privilege and other user
data with other SQL statements, such as UPDATE, INSERT, DELETE, or
ALTER. Such direct internal table changes are typically not automatically
flushed, and must be followed with a FLUSH PRIVILEGES statement in
order for the DBMS to recognize those changes.

In addition to simply allowing or disallowing database access to a user,
we can achieve greater database security when access is allowed by lim-
iting the type(s) of database access allowed. As an example, if we would
like to allow user garrett to have read-only (or retrieve-only) access to the
BusinessTLS database, we can issue the GRANT statement like that in
Figure 5.7. Here, as well as onward, we will issue GRANT statements in a
single line for brevity, but you may alternatively use multiple lines, as we
previously issued for roberts, if you wish. This particular GRANT state-
ment replaces the keyword ALL with SELECT to limit the privilege(s)
given to garrett. That user will only be able to issue SELECT statements
on tables in the database, effectively permitting only data retrieval or
read-only access.

FIGURE 5.7 Granting database read-only access.

While garrett can now successfully retrieve data by issuing a SELECT on
the BusinessTLS database, other operations to add, make any changes to, or
delete data or tables will not be allowed. As an example, if garrett attempts
to delete some data in that database, that particular access will be denied.

66 • Database security

Figure 5.8 illustrates user garrett issuing a successful data retrieval followed
by an unsuccessful attempt to delete data.

FIGURE 5.8 Successful read-only access to data.

5.2 CAPABILITY TO MANAGE PRIVILEGES

As previously mentioned, the database root account by default has the capa-
bility to assign (and as we will soon see, to remove) user privileges. We can
also assign those abilities to another user account, say to an administrative
account that is to have those responsibilities. To assign this capability to
another account, the root account (or other previously assigned administra-
tive account) must issue two GRANT statements. Figure 5.9 shows the root
account assigning the capability to manage privileges to the user sanford, who
will later be the organization’s Chief Information Officer and the one most
suited for such responsibilities in this organization.

FIGURE 5.9 Assigning the capability to manage privileges.

The first GRANT statement gives sanford all access to databases in
the DBMS; this is necessary to allow sanford the necessary access to issue
administrator operations.2 The second GRANT statement contains the WITH
GRANT OPTION clause that gives the capability to manage user privileges.

2Note that, for greater security, if we typically do not want the administrative user to have access to certain nonsys-
tem databases, we can selectively remove those databases from the administrative user privileges using techniques
described in the “Removing Privileges” section.

Database Privileges • 67

sanford may have to log out of the current DBMS session and log back in
for that recently applied effect to be recognized. Similar to the root account,
sanford can now manage privileges for other users, and we will demonstrate
that shortly.

Tip: The WITH GRANT OPTION privilege allows a user to manage the privi-
leges of other users.

In addition to allowing a user to manage privileges, this example also
shows how we can implement security measures that define or limit the types
of access for a particular user based on from what system the user is logging
into the DBMS. Because we assigned the administrative capability to manage
privileges to only the 'sanford'@'localhost' account and not to the other san-
ford account, we are requiring sanford to log in from the DBMS system itself.
This security measure disallows sanford the capability to manage privileges
when logged into the DBMS from another system, and organizations often
limit what administrative access may occur remotely or over a network. By
creating multiple database accounts for a user, with each account associated
with a different host or group of hosts, and assigning certain privileges to
those accounts, we can define a user’s access based on from what system the
user logs into the DBMS.

You may have also noticed that 'sanford'@'192.168.2.%' still has no data-
base privileges, other than to log into the DBMS. Depending on what access
we want to allow that user when logged in over that network, we can define
nonadministrative access, such as we did for roberts or garrett, or adminis-
trative as we did for 'sanford'@'localhost'. For our demonstration, let’s give
'sanford'@'192.168.2.%' all access to BusinessTLS but nonadministrative, as
shown in Figure 5.10.

FIGURE 5.10 Granting nonadministrative database access.

5.3 LISTING PRIVILEGES

Let’s now explain the ways in which we can see the privileges of a database
user. To list their own set of assigned privileges, a database user can issue the
SQL SHOW GRANTS statement, whose general syntax is given in Figure 5.11.

68 • Database security

SHOW GRANTS [FOR 'user'[@'hostname']];

FIGURE 5.11 General SQL syntax to show a user’s privileges.

The simplest form of the SHOW GRANTS statement is when issued by
a user to show their own privileges, and involves just those two keywords.
Figure 5.12 shows user garrett listing their privileges.

FIGURE 5.12 A database user listing their own privileges.

Examining this listing, we notice two sets of privileges. The first privi-
lege is assigned when the database user account is created; this privilege only
allows access into the DBMS and not to any of its databases. The second
privilege represents the read-only access to the BusinessTLS database that
we assigned. Both privileges indicate the username, and note that because we
did not specify a hostname when we created the database account for garrett,
a wildcard is represented for any hostname of that user. You will notice a
similar listing of privileges for roberts except that the second indicates that all
privileges have been given to the database.

While a nonadministrative database user can only see their own privi-
leges by default, the DBMS root account or other administrative account
can see privileges for themselves as well as for other users. Figure 5.13
shows the database root account listing their own privileges. You will notice
quite a number of privileges listed for the root user, including the more
common SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, along
with and many others. Because of the longer lines resulting from the longer
list of privileges, the output of a privilege listing may be a little difficult to
read without increasing the width of the terminal window. Figure 5.13 has

Database Privileges • 69

the right side border edited out and some lines shortened to help make it
more readable.

FIGURE 5.13 Showing the privileges of the database root account, edited for brevity.

To see the privileges of another database user, the root or an administra-
tive account can issue the SHOW GRANTS statement and specify the desired
user, in this case roberts, as shown in Figure 5.14. Note that this time, both
the root account and administrative account 'sanford'@'localhost' are capable
of listing another user’s privileges.

FIGURE 5.14 Showing privileges of another database user.

Note that in order to list the privileges of a database user account associ-
ated with a hostname, we must include the full username@hostname specifi-
cation. For example, if we were to use the root or an administrative account to
list the privileges for 'chu' rather than 'chu'@'localhost', the response would
be that there is no user by that username with no host restriction, as illus-
trated in Figure 5.15. In a similar manner, you will notice different privileges
for 'sanford'@'localhost' and 'sanford'@'192.168.2.%'.

70 • Database security

FIGURE 5.15 Showing privileges for a database user’s two accounts.

If we want to see a list of the privileges to all users, there is not a built-in
or native way to do so with MySQL, MariaDB, or Oracle DBMSs. However,
there are various approaches that may accomplish this goal. Figure 5.16 shows
one approach for MySQL that executes in a Linux command line prompt (this
will prompt you for the database root password twice). Only part of the result
is shown for brevity.

FIGURE 5.16 Showing the privileges of all users.

5.4 REMOVING PRIVILEGES

In addition to adding privileges with GRANT, we can also remove privileges
with the SQL REVOKE statement. Either the database root account or an
administrative account can remove a user’s privileges. Figure 5.17 shows the
general syntax for REVOKE in MySQL, MariaDB, and Oracle.

REVOKE privilege(s)

ON [database.]table

FROM 'username'[@'hostname'];

FIGURE 5.17 General syntax of SQL REVOKE statement to remove privileges.

Database Privileges • 71

Similar to GRANT, the privilege(s) that we can revoke are among those
listed in Table 5.1. To demonstrate the removal of privileges, let’s consider the
principle of least privilege, which defines that a user should be given only the
access or privileges needed to carry out their task or role, and nothing more.
Suppose we determine that the previous decision to give roberts all privi-
leges to BusinessTLS raises a security vulnerability and is insecure, and that
read-only access is appropriate. We can lower that user’s privileges by first
removing all of the privileges and then adding only the privilege to read or
retrieve data. As shown in Figure 5.18, we first issue the REVOKE statement
that takes away all of the privileges that roberts has, and then with GRANT
add only the privilege to SELECT on the database. If we list the privileges of
roberts now, we will see that only SELECT privilege remains.

FIGURE 5.18 Reducing a user’s privileges.

We can also revoke specific privileges rather than all privileges, and in
certain situations we may be able to remove certain privileges without the
need to add back others and achieve our security objective. For example, if a
user currently has only SELECT and UPDATE privileges, and we determine
that only SELECT is necessary, we only need to revoke the UPDATE privi-
lege and not have to subsequently grant any privileges back.

However, we must also be careful when removing privileges from a user
that currently has all privileges assigned. Assigning privileges with the SQL
keyword ALL can refer to a large set of privileges (and that set can vary among
DBMSs). So unless we can be sure that we revoke a complete set of extra priv-
ileges, we risk leaving more privileges than is necessary and compromising the
principle of least privilege.

As an example of this situation, suppose we gave 'chu'@'localhost' all
privileges, then decide that we only want that user to have SELECT privi-
lege. However, we attempt to implement this downgrade of privileges with
only a revoke statement for the SQL operations that we think of offhand.
Figure 5.19 illustrates this chain of events.

72 • Database security

FIGURE 5.19 Adding all, then removing only some user privileges.

Without considering all possible privileges that were initially granted,
after revoking we can see in Figure 5.20 the user has not only the SELECT
privilege we intended, but many other privileges that we overlooked.

FIGURE 5.20 Listing user privileges that were overlooked.

Note that if a user currently has a set of database privileges, and we
attempt to revoke one or more privileges that are not in that set of privileges,
there is no error. Likewise, if a user has a set of privileges that is fewer than all
privileges, we can still revoke the remaining privileges with the ALL keyword.

To “clean up” from the last example of leaving overlooked privileges if it was
carried out (and that would be necessary to set up our next examples), we can
revoke the privileges that remain for 'chu'@'localhost' as shown in Figure 5.21
and list the user’s privileges to confirm no privileges remain for that user.

FIGURE 5.21 Removing any remaining privileges.

Database Privileges • 73

As a side note, to revoke a certain privilege we must specify the database(s)
in the same manner as they were specified when the privilege was granted. In
particular, if a user was assigned privileges to one or more databases specified
by the database name(s) and not a *.* wildcard, we must revoke the privileges
in a similar manner. In other words, we cannot revoke privileges from those
databases with a *.* database wildcard. We must list the databases by name
just as they were assigned and as they also appear in a privilege listing. As an
example, given that 'sanford'@'192.168.2.%' was previously granted privileges
to the database BusinessTLS, to revoke any of those privileges we have to
specify BusinessTLS by name rather by *.*.

In general, if we want to restrict the database privileges of a user who
currently has all privileges, it is safer from a security standpoint to revoke
all privileges and then grant the desired privilege(s). However, if a user
has a limited set of privileges, then we may be able to safely revoke cer-
tain privileges and leave only those that maintain the principle of least
privilege.

5.5 WORKING WITH TLS AND TABLE-LEVEL PRIVILEGES

In our business scenario, let’s suppose that the principle of least privilege has
led to increased security restrictions, such that the tables in the BusinessTLS
database will be accessed by each user according to the type of access listed in
Table 5.2. Note that we have listed each user’s type of allowed access in high-
level terms, which can be helpful when planning and identifying the types of
accesses with nontechnical personnel.

User Account Employee Budget

roberts read read,write

garret read read,write,add, remove

chu@localhost read-write,add,remove read

gardner@192.168.2.10_ read read

donnelly@localhost read read

donnelly@192.168.2.8 read read

sanford@localhost read,grant read,grant

sandord@192.168.2.% read read

TABLE 5.2 Defining user data access requirements for tables in the BusinessTLS database.

74 • Database security

In general, we want to allow all employees the capability to read
the Employee table data, but only allow human resources personnel to
read and write that data. To implement this security objective, we will
employ two sets of privileges for the Employee table: one that allows all
employees (except for human personnel) to read the Employee table and
one that allows human resources personnel to read and write that table.
Managing this type of access will involve the SQL GRANT statement
 similar to how we managed database-level access, but in this case with
individual tables.

Table 5.2 illustrates a situation where a particular user (donnelly) will
have the capability to log in from multiple systems, but will have the same
type of access regardless of which system they log in from. That user is able
to log into the DBMS directly (from) localhost or from the system with the
IP address 192.168.2.8, and in both cases will have read-only access to both
tables.

But a situation may alternatively call for a user to have one set of privi-
leges when logging in from a certain system and another of privileges when
logging in from another system or network. Table 5.2 also illustrates that situ-
ation with user sanford, who will have read and grant privileges when logging
into the DBMS directly, and has only read privilege when logging in from any
system in the 192.168.2 network.

Before we begin assigning privileges to meet our security objective
with table access, let’s consider that we previously assigned database-level
privileges for at least some users, and we now want to manage access by
table-level. As we saw with database-level privileges, we may find it more
effective from a security point-of-view to remove all privileges first and start
new with assigning privileges, especially if we are unsure about the extent
to which privileges have been previously given. Following this idea, we will
revoke any existing privileges to BusinessTLS for all users first. Recall that
because we had previously granted 'roberts', 'garrett', 'sanford'@'localhost'
and 'sanford'@'192.168.2.%' access to BusinessTLS.*, we must revoke their
privileges from that specific database rather than with the *.* database
wildcard. Figure 5.22 shows the commands by which we can revoke their
privileges. If you have privileges remaining for the other users, similarly
revoke theirs as well.

Database Privileges • 75

FIGURE 5.22 Removing all privileges to start with a new assignment.

Recall that we had also granted 'sanford'@'localhost' the capability to
manage user privileges, so we will also have to remove that privilege with the
REVOKE statement shown in Figure 5.23. Note that if we happen to revoke
the GRANT OPTION privilege while other privileges coexist for that same
database or table, those other privileges will remain.

FIGURE 5.23 Removing the capability to manage user privileges.

We want every user to have a list of privileges like that shown for roberts
in Figure 5.24.

FIGURE 5.24 User with no assigned privileges.

Now that we have a “clean slate” of user privileges, we can begin imple-
menting our security objective for table access. Looking at the types of
accesses specified in Table 5.2, we will have to define the type of accesses

76 • Database security

in terms of SQL privileges, using some mapping of high-level access to SQL
privilege level specification such as that in Table 5.3. Note that we have dis-
tinguished read-write access to involve only an UPDATE privilege and not
itself include the INSERT or DELETE privileges. Such a distinction allows
us to permit one to modify existing data, but not to add or remove data. Such
a restriction may be required by a compliance standard, where an employee
may be able to modify data but cannot fabricate new data or destroy its exis-
tence. However, if a situation calls for a user to have the capability to read,
write, add, and remove data, we can combine high-level accesses and their
corresponding SQL privileges.

High-level access SQL Privilege(s)

read or read-only SELECT

read,write or read-write SELECT and UPDATE

add INSERT

remove DELETE

grant GRANT OPTION

TABLE 5.3 Mapping of high-level access to SQL table privilege.

Starting with the Employee table, we can specify that username 'roberts'
has read-only access to the Employee table, as shown in Figure 5.25. The same
read-only privilege should also be granted to 'garrett', 'gardner'@'192.168.2.10_',
'donnelly'@'localhost', 'donnelly'@'192.168.2.8', and 'sanford'@'192.168.2.%'.

FIGURE 5.25 Assigning read-only access to the Employee table.

You may have noticed that we did not list 'sanford'@'localhost' in that last
set of users. That is because we have to also assign that user the capability to
manage user privileges. As a result, we will have to assign both read-only and
grant privileges as shown in Figure 5.26.

FIGURE 5.26 Assigning read-only access and user privilege management to the Employee table.

Database Privileges • 77

As a side note, if we had included 'sanford'@'localhost' in that read-only
privilege assignment with the other users in Figure 5.25, we can add just the
GRANT OPTION privilege to that user, as shown in Figure 5.27. That privi-
lege will add the capability to manage user privileges.

FIGURE 5.27 Assigning user privilege management to the Employee table.

Because of their job requirements, we now must allow only human resources
personnel (that is, Betty Chu) the capability to read as well as write Employee
table data. In terms of database table access, this will include the capability to
read and write, as well as add and delete data. We can assign those privileges to
the human resource personnel with the grant statements shown in Figure 5.28.

FIGURE 5.28 Assigning read-write, add, and remove access to the Employee table.

To review the privileges that were assigned to the Employee table, let’s
show the privileges for roberts and demonstrate both the capability to retrieve
data as well as incapability to change data in the Employee table. Figure 5.29
shows user roberts listing their privileges, attempting to retrieve data and
attempting to change data, such as their address. Because only the SELECT
privilege appears for BusinessTLS.Employee, the retrieve operation is suc-
cessful, but attempts to change, add, or remove data are denied.

FIGURE 5.29 Demonstrating read-only access to the Employee table.

78 • Database security

All of the other users (except for chu) should have similar listed priv-
ileges to that of roberts, specifically the capability to retrieve data, but
incapability to access the Employee table in any other way. For the human
resource personnel, let’s show the privileges for chu and demonstrate both
the capability to retrieve and change data (such as for the address of rob-
erts) in the Employee table. Both operations are allowed because of the
presence of SELECT and UPDATE privileges for BusinessTLS.Employee,
as shown in Figure 5.30. Also note that operations by chu to add or remove
data are also allowed, as indicated by the presence of INSERT and DELETE
privileges.

FIGURE 5.30 Demonstrating read-write access to the Employee table.

Even though the operations may appear as expected for a given user,
for a more thorough security assessment, we may need to test further. As
examples, we may have to repeat such tests for each database user account,
even if a user has the same privileges as another user that we previously
tested successfully. We may also have to consider issuing operations that
should not be allowed and confirming those accesses are denied, such as
attempting to DROP (delete) the entire Employee table or create another
table.

Database Privileges • 79

Moving onto the Budget table, suppose we similarly want any employee
to read Budget data, but only allow the CEO and CFO to read and write
that data. Additionally, we want to allow only the CFO to also add or remove
Budget table data. Similar to the Employee table, we can assign read-only
privilege to all employees except for the CEO and CFO, of whom we would
assign read-write privileges. Starting with the employees from first to last, we
have read-write access given to 'roberts' as shown in Figure 5.31.

FIGURE 5.31 Assigning read-write access to the Budget table.

We additionally issue to garrett the capability to create and delete Budget
table data, as shown in Figure 5.32.

FIGURE 5.32 Assigning read-write access to the Budget table.

For all other employee accounts, we will assign read-only access, as we
do for chu in Figure 5.33. Repeat that GRANT statement for the remain-
ing database user accounts, namely 'garrett', 'gardner'@'192.168.2.10_',
' donnelly'@'localhost', 'donnelly'@'192.168.2.8', and 'sanford'@'192.168.2.%'.

FIGURE 5.33 Assigning read-only access to the Budget table.

As with the Employee table, we will also include the user privilege man-
agement GRANT OPTION privilege for 'sanford'@'localhost', as shown
in Figure 5.34. Also, as with the Employee table, if we had already given
' sanford'@'localhost' read-only access to Budget, we could assign just the
GRANT OPTION privilege.

80 • Database security

FIGURE 5.34 Assigning read-only access and user privilege management to the Budget table.

At this point there may be some questions or observations. You might
have noticed that we have given 'sanford'@'localhost' only SELECT privilege
combined with the GRANT OPTION. At first thought we might consider that
if a user has the capability to manage privileges of a database or table, that
same user should also have all privileges to that database or table. However,
we should also consider the principle of least privilege, and that even though
a user requires the capability to manage privileges of a database or table, that
user may likely not require the capability to issue all types of data access,
such as make changes to the data of that database or table, or in some cases,
even retrieve the data. Consequently, because sanford is the CIO and is on
the technology side, we did want 'sanford'@'localhost' to have the capability
to manage user access to the Employee and Budget tables but not have the
capability to change, add, or remove their data.

Also, you may have noticed that when a database user has the same access
to both Employee and Budget, we granted those privileges one table at a
time rather than together. For example, given a user with read-only access
to both tables, we granted that user SELECT privilege to each table in sep-
arate statements, one table at a time. Alternatively, we could have granted
that user SELECT privilege to both tables in one statement by specifying a
BusinessTLS.* database-level privilege. While such a shortcut of reducing
the number of SQL statements may seem tempting, we do have to consider
the security vulnerability introduced with doing so. In particular, when we
assign a database-level privilege, we assign that privilege to all tables in the
database, both current tables as well as any tables added in the future. And
while a database-level privilege may fulfill the principle of least privilege at
present (as is the case with Employee and Budget), if a table is later added
to the database, that new table will automatically inherit the database-level
privilege. And we may not want the user to have that privilege with the new
table. Consequently, if a table is later added and the privileges to that table
are not the same as those of the other tables, we would have to take the steps
to identify and revoke all extra privileges in order to uphold the principle of
least privilege. Otherwise we introduce a security vulnerability by allowing
a user to have more privileges to the new table than the user should have.
Consequently, it is safer practice to avoid table wildcards at the onset and

Database Privileges • 81

specify all tables by name. That way, if a table is added in the future, the
new table is automatically secure from any access, and then we can assign
the necessary privileges for that table. This is an example of being default
secure.

To ensure that the privileges have been properly assigned, we should
now list each user’s privileges and confirm they appear as expected. In
addition, we should also test a user’s access to confirm the outcome is as
expected. Figure 5.35 shows a series of operations, when logged in as user
roberts and after choosing the BusinessTLS database, to confirm successful
read-write access, as well as unsuccessful add and remove access, to the
Budget table. Specifically, the presence of normal output by the SELECT
operation and “Query OK” result by the UPDATE indicates these accesses
were successful, and that the allowed privileges appear to be assigned prop-
erly. Furthermore, the presence of “command denied” errors for both the
INSERT and DELETE attempts indicates that no additional privileges were
inadvertently assigned.

FIGURE 5.35 Confirming that user roberts has read-write access.

82 • Database security

To confirm the privileges for garrett, Figure 5.36 shows another series
of operations, this time logged in as user garrett and after choosing the
BusinessTLS database, to list the privileges as well as confirm successful read-
write, add, and remove access to the Budget table. Similar to before when
testing for roberts, the presence of normal output with the SELECT operation
and “Query OK” result by the other operations indicates these accesses were
successful and that the allowed privileges appear to be assigned properly.

FIGURE 5.36 Confirming that user garrett has expected access.

As with the Employee table, for a more thorough security assessment, we may
consider testing all users, as well as issuing all types of operations that should be
allowed as well as those that should not, and confirm the results are as expected.

Database Privileges • 83

5.6 TLS AND NORMALIZATION REVISITED

The concept of normalization presented in Chapter 2, “Database Design,”
can lead to better security management of the granting of privileges at the
table-level in an effective and efficient manner, as we described by grouping
related data together and separating data that may not be related. However,
we also mentioned that even with normalization, not all security require-
ments may be supported with security defined on a table basis, or table-level
security. In these cases, if we still wish to manage security on a table-level
we can break the table down further, so that columns with less restricted
access are placed in one table that itself has less restricted access, and the
columns that require greater restriction are placed in another table that
itself is given the greater restricted access. We saw this in Chapter 2, where
we split the Property table into two tables, one that contained all publicly
accessible columns and another table that contained all publicly restricted
columns.

As another example of managing data privileges at the table-level,
let’s reconsider the Employee table, and say we want to allow employ-
ees to retrieve certain data of other employees (for example, to obtain
another employee’s office or title). However, note that the Employee
table contains not only information that we can safely share among
employees, but also both personal information (PI) such as Address,
DOB, and Salary, as well as personally identifiable information (PII)
such as SSN. Because we should keep one’s PI and PII confidential,
we want an employee’s PI and PII to be accessible only to authorized
individuals, namely that particular employee and human resources per-
sonnel. In other words, non-human resources personnel should not be
able to access the PI or PII of another employee. To implement this
security requirement with table-level privileges, we will have to sepa-
rate the PI and PII data into one table and the non-PI and non-PII data
into another table. As illustrated in Figure 5.37, we kept the non-PI and
non-PII data in the Employee table, but split the PI and PII data into
a new table named HR. These tables and their data are available in the
BusinessTLSSplitHR database.

84 • Database security

Employee (EmpID, FName, LName, Title, Office)

HR (EmpID, Address, SSN, DOB, Salary)

Employee

EmpID FName LName Title Office
E01 Tom Roberts CEO A110

E02 Alison Garrett CFO A118

E03 Betty Chu HR Director A203

E04 Cindy Donnelly Sales Director B116

E05 Alex Gardner Sales Assoc B118

E06 Miguel Sanford CIO A202

HR

EmpID Address SSN DOB Salary
E01 212 Orchid Ave 000-404-1234 03/01/1957 175000

E02 1234 Brown St 000-145-0909 05/25/1966 140000

E03 67 Tulip Lane 000-223-7888 10/13/1973 80000

E04 101 Harrison Ave 000-132-5673 02/17/1970 60000

E05 73 East Liberty 000-454-9654 10/16/1982 48000

E06 43 Falcon Dr 000-065-7788 02/15/1967 160000

FIGURE 5.37 Employee data with PI and PII in separate tables.

Now we can increase security on the PI and PII with table-level privi-
leges by specifying different access requirements to the non-PI and non-PII
data in the Employee table compared to the PI and PII data in the HR table.
Specifically, we want to allow only human resources to have read-write—as
well as add and remove—access to both tables. We also want to allow all other
employees to have just read-only access to Employee, and no access at all to the
HR table. Table 5.4 lists the user access specifications for the new database.

User Account Employee HR Budget

roberts read none read, write

garret read none read, write, add, delete

chu@localhost read, write, add, delete read, write, add, delete read

gardner@192.168.2.10_ read none read

donnelly@localhost read none read

donnelly@192.168.2.8 read none read

sanford@localhost read, grant none, grant read, grant

sandord@192.168.2.% read none read

TABLE 5.4 Defining user data access requirements for tables in the BusinessTLSSplitHR database.

Database Privileges • 85

Note the privileges we previously applied to BusinessTLS have no effect
on BusinessTLSSplitHR, so we have a clean slate upon which to work; as
previously mentioned, it is generally good practice to start default secure
in order to prevent inadvertently leaving a user with too many privileges.
Because the access requirements for BusinessTLSSplitHR.Employee are
the same as with BusinessTLS.Employee, we can apply the same privileges
to that table, as shown in Figure 5.38. In this example, we first choose to
use the BusinessTLSSplitHR database so we do not have to specify the
database name in each grant statement. We also issue the first privileges to
' sanford'@'localhost', because as an administrator account, that user could
then issue the remaining privilege grants. We then assign read-only privileges
to all of the non-human resource personnel as a precaution. By specifying a
series of lower privileges before assigning the higher privilege, we can help
avoid accidently assigning human resource privileges to a non-human resource
employee, especially if we are recalling and editing previous statements.

FIGURE 5.38 Assigning privileges to the nonconfidential employee data.

86 • Database security

Also note that rather than create a new BusinessTLSSplitHR database
with the split tables, we could have instead edited BusinessTLS and moved
the PI and PII columns out of the Employee table into a new HR table. In
this manner, the grants that were previously issued to the Employee table
would still exist, and in this case can be used as is because the access to that
nonconfidential data did not change in this particular scenario. However, in
practice we should carefully assess whether it is best from a principle of least
privilege goal to start with a default secure new database and add the neces-
sary privileges for user data access requirements, or modify the current data-
base and manage its privileges accordingly, which may involve adding as well
as removing privileges. Depending on the situation, either approach may be
best in terms of or require fewer steps to implement.

To the newly split HR table, we now must assign human resources
 personnel read, write, add, and remove access, as shown in Figure 5.39.

FIGURE 5.39 Assigning privileges to the confidential employee data.

Note that in Figure 5.39 we designate that 'sanford'@'localhost' has the
 capability to manage privileges even though that user has no access to the
table’s data. Such a designation allows us to implement the situation that
 'sanford'@'localhost' (or any other such database administrator) has the capa-
bility to add or remove user privileges to the HR table as necessary, while
keeping the PI and PII confidential or inaccessible to themselves. To assign
such a privilege, we can assign no data access to the table by specifying only
the USAGE privilege along with the WITH GRANT OPTION clause.

Another way we can assign the capability to manage user privileges to a
table but have no other data access is by specifying GRANT OPTION as the
privilege, as shown in Figure 5.40.

FIGURE 5.40 Alternative approach to assign no data access but capability to manage privileges.

Database Privileges • 87

Regardless of how we specify a no-access privilege, we can then list the
privileges of 'sanford'@'localhost' and see the capability to grant privileges but
no read or other access to the data. Figure 5.41 shows the user’s privileges,
and in particular the privilege listing for the BusinessTLSSplitHR.HR table
shows USAGE privilege and the capability to manage user privileges.

FIGURE 5.41 Showing no data access but capability to manage privileges.

We can complete the necessary privileges for our new database by assign-
ing them for the Budget table. The privileges for the Budget table and its user
access specifications are identical to that in the BusinessTLS database, so we
can assign the privileges in a similar manner, as shown in Figure 5.42.

FIGURE 5.42 Assigning privileges to the confidential employee data.

88 • Database security

We can now keep PI and PII confidential to non-human resource per-
sonnel. We should test all user access to ensure the defined access require-
ments are met as expected. As examples, Figure 5.43 shows that roberts has
no capability to access the HR table (that should be the case for all non-hu-
man resources personnel).

FIGURE 5.43 Demonstrating that user roberts has no access to the HR data.

Figure 5.44 issues a data retrieval to confirm that 'chu'@'localhost' has
read access to the HR table. We could also test further to show that par-
ticular user also has the capability to change, add, and remove data to that
table.

FIGURE 5.44 Demonstrating that user chu has access to the HR data.

TLS can often provide a great deal of data security in a flexible man-
ner. However, there may be cases when TLS may not fully meet our data
needs. Consider that in our goal to keep PI and PII confidential, a non-hu-
man resource employee does not have the capability to see their own data or
manage their data directly. For such requirements, we have to turn to other
levels of data security, such as column-level or row-level security, or employ
other data access mechanisms. We will describe all of those, starting with
column-level security next.

Database Privileges • 89

5.7 COLUMN LEVEL SECURITY (CLS)

We saw with the BusinessTLS database that data access requirements may
vary among tables, as well as among columns within a table. In both cases,
we can implement these data security requirements by splitting a table into
multiple tables and employing TLS with table-level privileges. However, we
can also implement such data security requirements with approaches based
on column-level security (CLS). With CLS we can manage the security
requirements for each column individually, and this can be especially ben-
eficial in situations where the security requirements vary among the columns
of a table. One CLS approach involves granting and revoking privileges on
a column basis, also known as column-level privileges, which we will now
explore.

Referring to the business scenario and original Employee table before
we split that into two tables, let’s consider how we may implement CLS with
privileges to keep the PI and PII confidential. In other words, we will use CLS
privileges to achieve the data security for the PI and PII that we had with the
split Employee table, but with the original nonsplit Employee table.

Recall that for the nonconfidential (the non-PI and non-PII) data, we
want human resources personnel to have read, write, add, and remove access.
All other employees have read-only access. To demonstrate CLS in our busi-
ness scenario, we will use the database BusinessCLS, which contains two
tables: the original Employee table and a revised Budget table that contains
an additional column that will introduce another security requirement in this
scenario. Both tables have no assigned privileges, so we have a clean slate on
which to implement our CLS.

When implementing CLS with column-level privileges, it is helpful to
define the required and allowed user accesses, not only for each table, but
also for each column. For the table as a whole, we define the TLS require-
ments that will be implemented with table-level privileges. These should be
considered “blanket requirements,” in that they will apply to the entire table,
not only as the table exists now, but also as the table exists in the future. As we
previously described, if we later add a column to that table, the new column
automatically inherits the table-level privilege and has the same type of access
as the other table columns. Consequently, we must be aware and careful to
avoid inadvertently permitting such access to a column that is added in the
future. We will soon see an actual example of this type of problem with the
Budget table.

90 • Database security

We also define the CLS requirements that will be implemented with col-
umn-level privileges. We should consider the TLS requirements as minimal
requirements that are supplemented with the CLS requirements. In other words,
the TLS and CLS requirements should work together, and not where one cor-
rects or bypasses the security of the other. Table 5.5 illustrates how we may define
TLS requirements that are supplemented with CLS for our business scenario.

User Account Employee Budget

roberts read read,write

garret read read,write,add,remove

chu@localhost read-write,add,remove read

gardner@192.168.2.10_ read read

donnelly@localhost read read

donnelly@192.168.2.8 read read

sanford@localhost read,grant read,grant

sandord@192.168.2.% read read

TABLE 5.5 Defining user access for tables in the BusinessTLS database.

The first detail you may notice in Table 5.5 is that read or write access
is not specified for either table. We specify that type of access at the col-
umn-level. Instead, we define the higher, TLS requirements, namely whether
a user has the capability to generally access the table (with the USAGE priv-
ilege), manage privileges (with the GRANT OPTION privilege), add a new
row of data (with the INSERT privilege), and delete a row of data (with the
DELETE privilege). Notice that we specify the capability to add or remove a
row of data at the table-level and not at the column-level.

Tip: The privilege to add or remove a row of data is specified at the table-level
and not at the column-level.

Table 5.6 illustrates the read and/or write data access specifications of
each database user to the Employee table data at the column-level. Here we
can specify in detail the type of access (or lack thereof) each user has to each
column in the table.

Database Privileges • 91

user EmpID FName LName Title

roberts read read read read

garrett read read read read

chu@localhost read,write read,write read,write read,write . . .

gardner@192.168.2.10_ read read read read

donnelly@localhost read read read read

donnelly@192.168.2.8 read read read read

sanford@localhost read read read read

sandord@192.168.2.% read read read read

Office Address SSN DOB Salary

read none none none none

read none none none none

. . . read,write read,write read,write read,write read,write

read none none none none

read none none none none

read none none none none

read none none none none

read none none none none

TABLE 5.6 User data access requirements for the Employee table columns.

We previously granted each user the USAGE privilege on all data-
base tables with *.*, so each user already has USAGE privilege with the
BusinessCLS database Employee and Budget tables. No other privileges have
been set. Because user garrett is the CFO and needs the capability to add
or remove a row of data in the Budget table, and because 'chu'@'localhost'
requires the capability to add or remove a row of data in the Employee table,
we can assign those privileges, as shown in Figure 5.45. Also shown in that
figure, we also assign to 'sanford'@'localhost' the capability to manage user
privileges on both tables. We specified the BusinessCLS database and these
tables just to emphasize that we are now using that particular database for
these examples. You may alternatively choose the database with the SQL USE
keyword and then issue these statements without the database specification.

92 • Database security

FIGURE 5.45 Assigning necessary table-level privileges to the Employee table for CLS.

At this point, we can specify the finer-grain security requirements at the
column-level. Figure 5.46 shows how we assign column-level privileges of the
Employee table to roberts according to the user data access requirements
given in Table 5.6. We would assign the same column-level privileges to all
other non-human resources personnel.

FIGURE 5.46 Assigning column-level privileges to the Employee table for non-human resource personnel.

You may notice the structure of a column-level GRANT statement is very
similar to that of a table-level one. The difference is that we must specify the
affected column(s) of a privilege in a set of parentheses immediately after the
privilege. If a privilege applies to multiple columns, as in Figure 5.46, the col-
umn names are given in a comma-separated list. We can also specify multiple
comma-separated privileges in the one statement; however, in that case we
must also specify the column(s) that are affected by each privilege.

Let’s briefly demonstrate the security provided by the CLS that we just
implemented. As a simple test of the privileges for roberts, let’s confirm the
user can retrieve the nonconfidential employee data. Figure 5.47 shows a suc-
cessful retrieval by roberts of the non-PI and non-PII data in the Employee
table. While this example did retrieve all columns of which SELECT privilege
was assigned, we could also retrieve only one or a subset of those columns
as needed. Other non-human resource personnel assigned those privileges
should have a similar successful retrieval with one or more of those columns.

Database Privileges • 93

FIGURE 5.47 Successful retrieval of non-PI and non-PII Employee data.

As part of testing that data security requirements are met, we should also
attempt to access data for which a user is not authorized. As an example, let’s
consider an attempt to retrieve some of the PI and/or PII data by roberts, as
shown in Figure 5.48. You will notice a similar denial by the DBMS if roberts
or other non-human resource personnel attempt to retrieve any subset of the
PI or PII data. This is an example of how we can provide confidentiality with
column-level privileges.

FIGURE 5.48 Unsuccessful retrieval of PI and PII Employee data.

In a similar manner, a retrieval of any or all Employee columns is unsuc-
cessful if the user does not have SELECT privilege to one or more of the given
columns. Figure 5.49 shows an attempt by roberts to retrieve columns that
contain both nonconfidential and confidential data. Even though roberts is
authorized to retrieve the nonconfidential columns, the retrieval fails because
the retrieval includes confidential columns. Likewise, an attempt to retrieve
all columns in the Employee table is unsuccessful because roberts is not given
SELECT access to all Employee columns.

FIGURE 5.49 Unsuccessful retrieval of nonconfidential and confidential data.

94 • Database security

Moving to the human resource personnel, we can assign read and write
access for 'chu'@'localhost' with the GRANT statement shown in Figure 5.50.
Even though the user data access requirements in Table 5.6 specify that
'chu'@'localhost' has read-write access to all columns, we still list the columns
in the GRANT statement to provide that CLS. Notice that in Figure 5.50 we
show how to assign multiple privileges at the column-level in one statement,
although we could have issued one statement for the SELECT privilege and a
second statement for the UPDATE privilege.

FIGURE 5.50 Assigning column-level privileges to Employee for human resources personnel.

We may be tempted to issue 'chu'@'localhost' a table-level read-write
privilege for brevity, like that in Figure 5.51, because the user is defined to
have read-write access to all Employee columns. Notice that we are not actu-
ally executing this statement, but rather showing it for discussion.

FIGURE 5.51 Alternatively assigning table-level privileges to Employee for human resources personnel
(note this can be less secure than assigning column-level privileges).

However, in such a case, assigning that privilege at the table-level intro-
duces a security vulnerability. That vulnerability is like the one we described
with assigning a database-level privilege with a .* wildcard when that privi-
lege applies to all tables in the database. Specifically, just because a user has
a certain privilege to all table columns at the present time, a column with
a different security requirement may be added to that table in the future.
And by assigning a table-level privilege now, we open the door for any future
columns to automatically inherit the table-level privilege. For example, say
a new column is later added to Employee, and that column is to be inacces-
sible to human resources personnel, or at least have a different set of access
requirements than the other columns. The assignment of a read-write table-
level privilege to Employee now will allow human resource personnel to have

Database Privileges • 95

read-write access to that new column when it is later added. Consequently,
when assigning privileges for CLS, it is safer practice to specify all columns
by name, because if a new column is added in the future, 'chu'@'localhost'
will not have access to the new column unless we assign a privilege for that
column. This is also an example of being default secure.

Tip: Assigning a privilege with a wildcard for columns can introduce a security
vulnerability!

Moving on to the Budget table, Table 5.7 illustrates the defined user
specifications for that data at the column-level.

User BudgetID Year Quarter Sales Expenses

roberts read, write read, write read, write read, write read, write

garrett read, write read, write read, write read, write read, write

chu@localhost read read read read read

gardner@192.168.2.10_ read read read read read

donnelly@localhost read read read read read

donnelly@192.168.2.8 read read read read read

sanford@localhost read read read read read

sandord@192.168.2.% read read read read read

TABLE 5.7 User data access requirements the Budget table columns.

All employees are to have read-only access to all of the columns except
for the CEO and CFO, who both have read-write access to all columns. Even
though we consider all Budget table columns to have the same access for a
given user, for best security practices we will assign column-level privileges
and specify all columns by name. Figure 5.52 shows the read-only privilege
we will assign to human resources personnel; we are to assign similar privi-
leges to the other non-CEO and non-CFO employees.

FIGURE 5.52 Assigning column-level privileges to Budget for read-only access.

96 • Database security

For the CEO and CFO, we now assign read-write access to the Budget
table. Figure 5.53 shows the assigning of read-write privilege for roberts. We
want to repeat that same statement for garrett.

FIGURE 5.53 Assigning column-level privileges to Budget for read-write access.

On to testing the assigned read-write privilege for human resources. In
Figure 5.54, logged in as chu directly into the DBMS, we issue a retrieval of
employee PI and PII, as well as change an employee’s address, confirm both
are successful, and then change the address back to its original value. Note
that human resources can retrieve any or all columns in Employee because
read-write access has been granted to that user for all columns.

FIGURE 5.54 Testing that human resources has read and write access to Employee data.

Database Privileges • 97

Notice that we already assigned 'chu'@'localhost' the capability to add or
remove rows in Employee with a table-level privilege. We should test that
user’s capability to add and remove a fictitious employee, as illustrated in
Figure 5.55.

FIGURE 5.55 Testing that human resources can add and remove Employee data.

We can list the privileges for column-level privileges in the same way we
did so for table-level privileges. Figure 5.56 illustrates how we can list the
privileges assigned to roberts, which will include the user’s table-level and/
or column-level privileges. In that listing, notice that for the BusinessCLS.
Employee table, SELECT privilege is associated with the set of columns
(EmpID, FName, LName, Title, Office) rather than tables, indicating the
SELECT privilege was assigned to only those columns for that user. Because
we assigned the privileges to those columns specifically, those privileges
are not associated with the table itself and as such, if any columns are later
added to BusinessCLS.Employee, they will be default secure. The other
non-human resources personnel should have a similar privilege listing for the
BusinessCLS.Employee table.

FIGURE 5.56 Showing table and column-level privileges for the CEO, edited for brevity.

98 • Database security

Additionally, notice that for the BusinessCLS.Budget table, user rob-
erts has SELECT and UPDATE privileges for all columns of that table.
The columns are also listed individually, indicating that the column names
were explicitly stated for the assigning of those privileges. The CFO (gar-
rett) should have a similar privilege listing for the BusinessCLS.Budget
table. Because of the longer line resulting from the list of column names
involved with the BusinessCLS.Budget privileges, the output of that privi-
lege listing may be a little difficult to read without increasing the width of
the terminal window. The right side border is edited out and some lines
are shortened to help make Figure 5.56 (as well as next in Figure 5.57)
more readable.

For human resources personnel, Figure 5.57 shows the privileges for
'chu'@'localhost'. In a similar manner, we see that for the BusinessCLS.
Employee table, SELECT and UPDATE privilege is associated with all col-
umns given by their names. Likewise, for BusinessCLS.Budget, SELECT
privilege is assigned for all columns given by their names. That way, if any
columns are later added to either table, they will be default secure. Other
users, except for the CEO and CFO, will have a similar privilege listing for the
BusinessCLS.Budget table.

FIGURE 5.57 Showing table and column-level privileges for human resources, edited for brevity.

5.8 CLS AND EVOLVING DATA ACCESS REQUIREMENTS
AND DATA

In practice, data access requirements may change over time. The tasks
or data access requirements of an employee may be extended to require

Database Privileges • 99

accessibility to more data, or reduced to require accessibility to less data.
In addition, new data may be introduced in the form of one or more new
table columns that may or may not be accessible to certain employees. Let’s
consider the following changes that might occur over time within our busi-
ness scenario:

1. The capability for CEO and CFO to read Salary data

2. The capability for Employees to see Address data

3. The capability for executives to keep private notes in the Budget table.

The capability for CEO and CFO to read salary data

A situation may arise where management or administration may need
access to certain employee PI, such as employee salaries to determine
budgets, hiring considerations, or raises. If we want to give the CEO and
CFO read access to employee salaries, we only need to add a column-level
privilege for the Salary column to those users. Figure 5.58 illustrates how
we can do so.

FIGURE 5.58 Adding an additional column-level privilege for two users to read salaries.

Note that if a user already has a set of privileges for that table, we can add
to (or remove from) those privileges by specifying only the relative change
to the current privileges. In other words, we do not have to specify a com-
plete set of privileges that includes the current privilege(s) as well as the new
privilege(s).

Now both the CEO and CFO can read data in the Salary column along
with the other non-confidential data. Figure 5.59 shows user roberts retriev-
ing employee names and their salaries. We should similarly test that user gar-
rett can do so as well.

100 • Database security

FIGURE 5.59 User roberts reading salary data with the newly added privilege.

The capability for employees to see address data

At times, a situation may arise where certain PI may be accessed in a limited
manner, such as employee addresses for mailing of cards, gifts, or other pur-
poses. If we consider that all employees may be allowed to read address data
of other employees, we can incorporate that capability by similarly adding a
SELECT privilege to the Address column for the affected employees. Figure
5.60 illustrates the adding of this privilege to the user roberts, and we would
add this privilege similarly to other employees. Note that we do not need to add
that particular privilege to human resources personnel because they already
have been assigned read-write access to Address. But if we did add SELECT
privilege to a user that already has a SELECT privilege for that column, there
would be no functional change to the user’s capability to access that column.

FIGURE 5.60 Adding a column-level privilege to read addresses.

There can be other approaches to achieve a similar data access require-
ment, and we will see some of those in later chapters. If the privilege is tem-
porary, we would later have to remove that data access with the REVOKE
statement as shown in Figure 5.61.

Database Privileges • 101

FIGURE 5.61 Removing a column-level privilege to read addresses.

We would have to similarly issue this statement for other non-human
resources personnel. Note that we would have to be careful to not apply
this REVOKE statement to all employees, because if applied to human
resources personnel, we would remove their capability to retrieve employee
addresses.

 The capability for executives to keep private notes in the budget table

Let’s now consider the case where a table structure may change with the crea-
tion of new data. Suppose that the CEO and CFO wish to store private data
in the Budget table that only they can read and write. No other employees are
allowed even read access to that new data. We can implement this new data
requirement by adding to the Budget table a column named Notes to store
that confidential data, so that the Budget relation structure and its data is like
that shown in Figure 5.62.

 Budget (BudgetID, Year, Quarter, Sales, Expenses, Notes)

 Budget

BudgetID Year Quarter Sales Expenses Notes
B01 2021 1 1600000 1450000 (confidential)

B02 2021 2 1700000 1460000 (confidential)

B03 2021 3 1550000 1380000 (confidential)

B04 2021 4 1760000 1430000 (confidential)

B05 2022 1 1710000 1395000 (confidential)

B06 2022 2 1775000 1435000 (confidential)

B07 2022 3 1920000 1520000 (confidential)

B08 2022 4 1830000 1480000 (confidential)

FIGURE 5.62 Budget table structure and data with added column.

102 • Database security

We can add a new column to the Budget table with the ALTER statement
shown in Figure 5.63. For demonstration and testing purposes, we also fill in
values for that new column.

FIGURE 5.63 Adding a new column and values for the confidential data.

Notice that the newly added Notes column is default secure, because we
previously assigned column-level privileges to access the BusinessCLS.Budget
data as opposed to table-level privileges. Referring back to Figure 5.56 we can
confirm that column is secure by noticing that user roberts has SELECT and
UPDATE privileges to the columns (BudgetID,Expenses,Quarter,Sales,Year),
and that the new Notes column does not appear, either by name or inclusion
by a Budget.* column wildcard. User garrett has a similar privilege listing for
that table. Recall other users have no privileges to access the data in that table,
so at this time no users have access to the new column.

We must then add to the CEO and CFO a privilege that allows them
read-write access to the Notes column. Figure 5.64 shows the GRANT state-
ment that adds read-write privilege to the CEO and CFO for the new column.

FIGURE 5.64 Adding read-write column-level privileges for confidential data.

We can confirm that users roberts and garrett now have access to the new
column, as illustrated for roberts in Figure 5.65.

Database Privileges • 103

FIGURE 5.65 Testing that user roberts has successful read-write access to confidential data.

The added Notes column is an example of how we must be careful with
table-level privileges in order to maintain the principle of least privilege with
columns added in the future. If we had previously assigned a user read-only
access to the BusinessCLS.Budget table and later added the Notes column,
that user would now have read-only access to the confidential Notes column
by default. However, because we previously assigned non-CEO and non-
CFO users read-only privilege at the column-level by specifying all columns
by name, there are no privileges for the newly added Notes column until we
assign such, so the data in that new column is default secure. Consequently, by
default, or without any additional steps, all non-CEO and non-CFO employ-
ees have no access to that column, as demonstrated and tested by user chu in
Figure 5.66.

FIGURE 5.66 Testing that user chu has unsuccessful read-write access to confidential data.

While column-level privileges provide more detailed security manage-
ment over table-level privileges, table-level privileges and splitting tables can
still be helpful. First, if we can split tables so that all columns within a table
share the same security requirement, we may simplify database security man-
agement by assigning privileges on a table-basis only, rather than on both a
table- and column-level basis. Second, the task of specifying privileges for
every necessary column by name raises the risk of omitting a column or incor-
rectly defining a column’s privilege, either of which can potentially compro-
mise all CIA security principles. This may result with loss of confidentiality

104 • Database security

(by improperly allowing read access to unauthorized individuals, loss of integ-
rity (by improperly allowing write or delete access to unauthorized individuals)
or loss of availability (by disallowing access to authorized individuals). Finally,
while most DBMSs support column-level privileges, one may encounter a
DBMS (or an earlier version of one) that may not adequately support per-col-
umn privileges, and another approach such as table-level privileges may be
necessary.

5.9 ROW LEVEL SECURITY

The final dimension we will consider is row-level security. Row-level security
(or RLS) is based on the management of data access in terms of row(s), rather
than by table or column.

A common situation involving row-level security involves a table that con-
tains data about users, such as one user per row. In that table is a column that
contains personal information such as a SSN or a password that we want to
keep confidential. We want to allow a user to access the data in the row(s) that
corresponds to them, but disallow that user to access data in any other rows.

Implementation of RLS is not as straightforward as with TLS or CLS, and
that is because DBMSs typically do not implement RLS natively or directly.
Rather than specify privileges directly as we did with TLS or CLS, RLS
approaches vary among DBMSs. In general, we can use views, encryption
or database applications to manage RLS, and we cover those ideas more in
Chapter 7.

5.10 SUMMARY

In this chapter, we described and demonstrated a number of security controls
to manage user access to database components and data itself. These controls
can provide a great deal of base-level security to the DBMS. The next chapter
expands on this concept to describe how we may more efficiently apply these
security controls to a large number of user accounts. And later chapters will add
more control with managing user account access to the DBMS and its data.

C H A P T E R 6
roles

Now that we have an understanding of implementing database security
requirements with database users and privileges, let’s see how we may bet-
ter manage such security requirements among database users with the con-
cept of roles. A role represents a set of users that have common data access
requirements. Examples of a role include administration, managers, human
resources personnel, users working on a certain project, and so on. Rather
than assign privileges to a user directly as we did before, we instead assign
privileges to a role. Then we can add (as well remove) a user to that role. A
user who has been added to a role is considered to belong to the role or be a
member of the role. We can alternatively add a user to the role first and then
assign privileges to the role. Either way, the user then inherits the privilege(s)
assigned to that role. A role can have one or multiple user members, and a
user can belong to one or multiple roles.

To see how roles can streamline the management of database security
requirements with privileges, consider the repetitive work that might have
to be issued when assigning or removing privileges to a number of users who
have similar data access requirements. As an example, in our business sce-
nario when we previously assigned users read-only access to nonconfidential
employee data, we issued a grant statement for each such user. Likewise,
when we then added or removed columns that could be accessed read-only,
we had to issue a grant or revoke statement for each affected user. If we had
instead created a role that represented all employees and added all employees
to that role, we can add or remove privileges for all employees with a single
grant or revoke statement.

106 • Database security

In addition to streamlining the management of privileges, roles can pro-
vide a more secure approach to privilege management. Namely, after we
assign privileges to a role, we do not have to repeat the assignment of those
privileges to a new user who enters that role. This can reduce the possibility
of incorrectly assigning the privileges, whether by omitting a privilege—or
even worse—granting more privileges than are necessary. Likewise, as a
user’s job responsibility changes or is removed, we can remove the user
from that role, which causes the user to lose that role’s privileges, and we do
not risk overlooking the removal of privileges that are no longer required.
In both of these examples, roles helped maintain the principle of least
privilege.

The method to use database roles involves first defining which users
belong to a role, as well as the data access requirements required for the role.
This will later define the exact privileges a role requires. After that, we create
the role or roles. In our demonstration, we then next assign privileges to a role
and then add users to a role. As mentioned, we could alternatively add users
to a role and then add privileges to the role, but that approach may be consid-
ered less secure, because if we incorrectly assign the role privileges, all user
members have those privileges until we correct that error. However, during
the evolution of the environment and data access requirements, data access
requirements to a role may change, and we may add or remove privileges to a
role that already has user members.

6.1 DEFINING ROLE MEMBERS AND DATA ACCESS
REQUIREMENTS

To demonstrate the use of roles with privilege management, let’s look at
the BusinessRole database, which contains our Business scenario but will
use roles. Here we have the Employee and original Budget tables (with-
out the Notes column included) of the previous chapter but with no privi-
leges assigned. Let’s see how we can alternatively use roles to achieve and
manage the data access requirements given in Table 5.5, Table 5.6 and
Table 5.7. In this scenario, we can consider five roles or sets of users: a gen-
eral role for all employees in the business, a role for the CEO employee(s),
a role for the CFO employee(s), a role for HR employee(s), and a role for
the CIO employee(s). Table 6.1 indicates the user(s) that belong in each
role, with an X placed in the corresponding cell that matches a given row
(user) with the role (column).

roles • 107

Role

user AllEmployees CEO CFO HR CIO

roberts X X

garrett X X

chu@localhost X X

gardner@192.168.2.10_ X

donnelly@localhost X

donnelly@192.168.2.8 X

sanford@localhost X X

sandord@192.168.2.% X

TABLE 6.1 Users and their roles in the business scenario.

Now let’s define the TLS and/or CLS requirements for each role.
Depending on the scenario, we may have only TLS requirements, only CLS
requirements, or both TLS and CLS requirements. In this case we have both.
Table 6.2a shows the TLS specifications for each role. Notice that we are allow-
ing all employees to have USAGE privilege for both tables. Recall that USAGE
privilege itself does not provide for specific access to a table, but rather allows
a user to access a table based on other privileges, such as the CLS privileges
that we will soon include. Even though certain employees will have additional
table-level privileges (such as the CFO’s requirement to add or delete rows in
the Budget table), we still define a minimal set of privileges that is applied to
all employees. If an employee is to have additional table-level privileges, we
add to the minimal set of privileges by adding the user to another role that
has those additional privileges. For example, even though user garrett is in the
AllEmployees role and has minimal access to all tables, that user is also in the
CFO role, and the CFO role includes the capability to add or remove rows
of data in the Budget table. So garrett has USAGE privilege provided by the
AllEmployees role, as well as INSERT and DELETE privileges provided by the
CFO role. The HR and CIO roles also have additional privileges that are added
to the privileges of the respective users who belong to those roles.

Role Employee Budget

AllEmployees usage usage

CEO usage usage

CFO usage usage,add,remove

HR usage,add,remove usage

CIO usage,grant usage,grant

TABLE 6.2A Roles and their TLS requirements that will be supplemented with CLS in the business scenario.

108 • Database security

When we list TLS (and, as we will also soon see, CLS) requirements for
roles, we may have some roles that have identical requirements. When that
happens, we can either implement both roles with the identical requirements,
or consolidate the roles into one role in order to implement fewer roles. Both
approaches have advantages and disadvantages, and we may find that one
approach is more suitable for a given scenario. For example, in Table 6.2a, the
AllEmployees role and CEO role have the same TLS requirements, namely
only USAGE privilege to the Employee and Budget tables. We can either
implement both roles with the same sets of TLS privileges, or consolidate
both roles into one.

If we implement both roles and their identical TLS requirements, notice
that for any employee who has the CEO role, the CEO role adds no addi-
tional TLS capabilities beyond that of the AllEmployees role. That is because
in this scenario, the CEO personnel also belongs to the AllEmployees role.
Even though this particular situation involves only two roles and one user, the
involvement of roles that add no additional privileges may accumulate and
increase the overall number and complexity of roles to manage. In practice,
when implementing security measures, we typically opt for the simpler and/
or smaller configuration of a security control. By doing so, we become less
likely to compromise the principle of least privilege or introduce security vul-
nerabilities. Such concerns can especially arise if we reduce a privilege in the
future for one role but overlook reducing that privilege in another role that
should also have had that privilege removed. As an example, suppose that
the AllEmployees and CEO roles have identical privileges that include read
access to some data. But later, the data access requirements change such that
we must remove read privilege of that data for all employees, including the
CEO. If we remove that read privilege from the AllEmployees role but over-
look removing read privilege from the CEO role, the CEO personnel would
still have read privilege to that data, thus compromising the principle of least
privilege.

On the other hand, if the AllEmployees and CEO roles have identical
privileges to a table, suppose we instead consolidate those roles, so there is
not a CEO role in the TLS requirements. Consequently, the CEO is a mem-
ber of only the AllEmployees role, and removing the read privilege from the
AllEmployees role now affects all employees, including the CEO. Following
the idea to consolidate roles when possible, we can reduce the list of roles
involved with—as well as simply the management of—TLS requirements by

roles • 109

omitting a set of TLS privileges for the CEO role, because that set would add
no additional TLS capabilities. Because the other roles do not share identical
requirements, we do not consider consolidating them. Table 6.2b shows a
reduced set of TLS requirements for roles, with the CEO role requirements
omitted, or more accurately, consolidated with the AllEmployees role.

Role Employee Budget

AllEmployees usage usage

CFO usage usage,add,remove

HR usage,add,remove usage

CIO usage,grant usage,grant

TABLE 6.2B Reduced set of roles and their TLS requirements that will be supplemented with CLS in
the business scenario.

Looking at the CIO role, we see the privileges for table usage as well
as to manage user privileges. Recall that the CIO sanford@localhost is to
have the capability to manage user privileges on both tables, however san-
ford@192.168.2.% is to have no such capability. We can implement that dis-
tinction by adding both users to the AllEmployees role, but only add sanford@
localhost to the CIO role. That in effect allows user sanford to have the CIO
role, and hence the capability to manage user privileges, only when logging
directly into the DBMS. In contrast, when user sanford logs into the DBMS
from another system in the 192.168.2.% network, that user is considered to
be in only the AllEmployees role and does not have the capability to manage
user privileges.

With the TLS requirements defined, we can now look at the CLS require-
ments of each table. Table 6.3a lists the CLS data access requirements for the
Employee table. Here we have read-only access to nonconfidential data for
all employees, but employees with the HR role additionally have read-write
access to all data.

role EmpID FName LName Title

AllEmployees read read read read

CEO read read read read

CFO read read read read . . .

HR read,write read,write read,write read,write

CIO read read read read

(Continued)

110 • Database security

Office Address SSN DOB Salary

read none none none none

read none none none none

. . . read none none none none

read,write read,write read,write read,write read,write

read none none none none

TABLE 6.3A CLS data access requirements by role for the Employee table columns.

Here we see a case that has a greater number of identical requirements
between roles. Among the five roles, four of them have identical CLS require-
ments. We can reduce the overall set of CLS data access requirements and
simplify the implementation of column-level privileges with the consolidated
list given in Table 6.3b.

role EmpID FName LName Title

AllEmployees read read read read . . .

HR read,write read,write read,write read,write

Office Address SSN DOB Salary

. . . read none none none none

read,
write

read,
write

read,
write

read,
write

read,
write

TABLE 6.3B Reduced set of CLS data access requirements by role for the Employee table columns.

In Table 6.4a, for the Budget table we also see some identical CLS data
access requirements across roles. As with the Employee table, we can com-
bine the roles that have read-only access and thus omit the HR and CIO roles.

role BudgetID Year Quarter Sales Expenses

AllEmployees read read read read read

CEO read,
write

read, write read, write read,
write

read,
write

CFO read, write read,
write

read,
write

read,
write

read,
write

HR read read read read read

CIO read read read read read

TABLE 6.4A CLS data access requirements by role for the Budget table columns.

(Continued)

roles • 111

Turning to the CEO and CFO roles, we also see they have identical data
access requirements and can be consolidated. However, such a consolidation
may create some confusion, because if we were to consolidate both roles into
the CEO role, then we would have to add both roberts and garrett (the CFO
employee) to the CEO role. Likewise, if we had instead consolidated both
roles into the CFO role, we would have to add both roberts (the CEO) and
garrett to the CFO role. Either way, we add a user to a role that does not
match their actual job description.

To avoid such confusion, we may choose to create a new role (such as
Financial) and consolidate the CEO and CFO roles into that. However, such
a choice increases the number of roles, and we must now add both users
roberts and garrett to that new role. Alternatively, we may find it simpler
overall to leave both the CEO and CFO roles in this set of requirements, so
each role provides the necessary privileges to their user(s). Table 6.4b follows
the latter approach, omitting the roles that have identical requirements to
AllEmployees but keeping the CEO and CFO roles, even though they have
identical data access requirements.

role BudgetID Year Quarter Sales Expenses

AllEmployees read read read read read

CEO read,
write

read, write read, write read,
write

read,
write

CFO read, write read,
write

read,
write

read,
write

read,
write

TABLE 6.4B Reduced set of CLS data access requirements by role for the Budget table columns.

6.2 CREATING A DATABASE ROLE, SHOWING ROLE
PRIVILEGES, AND REMOVING A ROLE

With the roles and their TLS and CLS data access requirements defined,
we can now implement that form of database security with roles. We will
first create the roles. To create a role with MySQL, MariaDB, and Oracle,
we use the CREATE ROLE statement, whose general syntax is given in
Figure 6.1.

112 • Database security

CREATE ROLE 'role'[@'hostname'];

FIGURE 6.1 General SQL syntax to create a database role.

To create one role, we specify a single role name, as we do for AllEmployees
shown in Figure 6.2. A role name follows the same rules as that of a database
user name, where we must enclose the name within quotes if the name con-
tains special characters. Even though our role names do not contain special
characters, we still enclose them within quotes for uniformity. We can also
specify that a role is restricted to a particular host or network with the @ sym-
bol followed by the restriction, as we did with database users. Here, we are
providing no such restrictions, so these roles are recognized when a user logs
in from any system.

FIGURE 6.2 Creating a single database role.

To create multiple roles at once, we can alternatively provide a com-
ma-separated list of role names, as shown in Figure 6.3. Here we create the
remaining roles for our Business scenario.

FIGURE 6.3 Creating multiple database roles.

To show the current privileges of a role, we use the SHOW GRANTS
statement like we did to show the privileges of a database user, except that
we specify the name of a role rather than a database user. Figure 6.4 shows
the current privileges for the AllEmployees role, which in this case shows that
by default, USAGE privilege exists for the tables in all databases. Because we

roles • 113

have not yet assigned any privileges to our roles, the other roles will currently
have a similar listing.

FIGURE 6.4 Showing the current privileges of a database role.

6.3 ASSIGNING PRIVILEGES TO ROLES

Now that the roles are created, we can assign the privileges to each role.
To add a privilege to a role with MySQL, MariaDB, and Oracle, we use the
GRANT statement similar to how we add a privilege to a database user. The
general syntax of this form of GRANT statement is given in Figure 6.5, and
is like that of granting a privilege to a database user, except we specify a role
rather than a user.

GRANT privilege(s)

ON [database(s).]table(s)

TO role(s);

FIGURE 6.5 General syntax of SQL GRANT statement that assigns privileges to database roles.

Starting with the TLS requirements given in Table 6.2b, we can assign
USAGE privilege of the Employee and Budget tables to the AllEmployees
role, as shown in Figure 6.6. Notice that we specify each table specifically
rather than use a wildcard, to maintain the principle of least privilege in case
a table was later added to the BusinessRoles database.

114 • Database security

FIGURE 6.6 Assigning table-level privileges to a database role.

With a base or minimal set of table-level privileges established to
AllEmployees, we can now add table-level privileges to roles that require
them. Recall the CEO role was consolidated with the AllEmployees role, so
we will start with the next role in the list, namely the CFO role. The CFO
role requires USAGE privilege for the Employee table and USAGE, INSERT,
and DELETE privileges for Budget. Although USAGE privilege alone may
already exist by default, we will add it to the Employee table anyway just to
be sure. Figure 6.7 shows how we can assign these privileges to the CFO role.

FIGURE 6.7 Assigning table-level privileges to the CFO role.

Moving on to the HR role, we need to assign USAGE, INSERT, and
DELETE privileges for the Employee table, and only USAGE privilege for
Budget. Figure 6.8 shows the assigning of these privileges to the HR role.

FIGURE 6.8 Assigning table-level privileges to the HR role.

roles • 115

We now reach the CIO role. In addition to USAGE privilege, the CIO
role requires the capability to manage user privileges on both tables. Similar
to how we granted the WITH GRANT OPTION privilege to database users,
we can do so with roles, as shown in Figure 6.9.

FIGURE 6.9 Assigning table-level privileges to the CIO role.

Once the TLS requirements are implemented, we turn to the CLS
requirements. Based on the data access requirements given in Table 6.3b,
we assign column-level privileges to only the AllEmployees and HR roles for
the Employee table. Figure 6.10 shows the assignment of read-only access
of the nonconfidential data to the AllEmployees role. In the same way that
we assign column-level privileges for a specific set of columns to a database
user, we provide the names of the affected columns in a parenthetically
enclosed comma-separated list immediately after the corresponding type
of access.

FIGURE 6.10 Assigning column-level privileges of Employee data to the AllEmployees role.

For the HR role, we must assign read-write access to all columns in
the Employee table. As we did with assigning access to all columns of a
table with database users, we want to specify the names of all affected col-
umns in order to maintain the principle of least privilege with any future
changes. Figure 6.11 shows that assignment of read-write column-level
privileges with the Employee table for the HR role. The SQL statement
in this figure and in the next few are issued across multiple lines for
readability.

116 • Database security

FIGURE 6.11 Assigning column-level privileges of all columns to the HR role.

Turning to the Budget table, Table 6.4b contains three roles for which we
must assign column-level privileges. Starting with the AllEmployees role, we
assign read-only privileges to all columns as shown in Figure 6.12.

FIGURE 6.12 Assigning column-level privileges of Budget data to the AllEmployees role.

The CEO and CFO roles have identical read-write column-level privi-
leges because we chose to keep both roles in the design. Figure 6.13 shows
the two statements that each assign read-write privileges to one of those roles.

FIGURE 6.13 Assigning column-level privileges of Budget data to the CEO and CFO roles.

After assigning privileges to a role, it is always a good practice to review
those privileges. By doing so, we can learn about incorrect privilege assign-
ments and correct them as soon as possible. This is not only important to main-
tain security of users that are already members of that role, but also for users

roles • 117

that we later add to that role. Figure 6.14 shows the current table-level and
column-level privileges for the AllEmployees role. We see the AllEmployees
role has USAGE privilege to all tables in the DBMS (by default). We also
see that role has SELECT privilege to all columns (explicitly named) in the
Budget table as well as for nonconfidential data in the Employee table.

FIGURE 6.14 Showing privileges for the AllEmployee role.

Figure 6.15 contains the statements to show and the resulting out-
put of the privileges for the CEO and CFO roles. Because the output of
these statements has lines that wrap, the output has been slightly edited
for readability. You will notice similar listings for both roles, as they both
have identical USAGE, SELECT, and UPDATE privileges. However,
the CFO role additionally has INSERT and DELETE privileges for the
Budget table because that role has the capability to add and remove rows
in that table.

FIGURE 6.15 Showing privileges for the CEO and CFO roles.

Figure 6.16 shows the privileges of the HR role. This output also has
wrapped lines and has been slightly edited for readability. Similar to the CFO
role, the HR role has the ability to read, write, add, and remove data in the
Employee table.

118 • Database security

FIGURE 6.16 Showing privileges for the HR role.

Finally to the privileges of the CIO role. As shown in Figure 6.17, we see
USAGE privilege similar to the AllEmployees role, with the additional capability
to manage user privileges as indicated by the WITH GRANT OPTION privilege.

FIGURE 6.17 Showing privileges for the CIO role.

If we want to remove a database role, we can issue a similar form of the
DROP statement, with the syntax given in Figure 6.18.

DROP role[@hostname];

FIGURE 6.18 General SQL syntax to remove a database role.

Reviewing the privileges that we set, if the privilege listings appear like
those in Figure 6.17, they are as expected with our design. Now we can move
to the last implementation step and add users to our roles.

6.4 DATABASE USERS AND ROLE

Now that we have roles created and their privileges assigned, we can add
users to those roles. This will in effect allow the users to obtain the privileges
of those roles.

roles • 119

Adding and removing a database user to a role

We add a user to a role with MySQL, MariaDB, and Oracle by using the
GRANT statement, although in a slightly different manner than we did to
assign privileges to database users or roles. Here, we specify the role or roles
rather than privileges. The general syntax to add a user to a role is given in
Figure 6.19.

GRANT 'role'[@'hostname'](s) TO 'user'[@'hostname'](s);

FIGURE 6.19 General SQL syntax to add a database user to a role.

With this form of GRANT statement, we can specify one or more roles
of which one or more users are to be added. When specifying multiple roles
or users, we provide them in a comma-separated list. We can also optionally
specify the @ symbol and hostname or network restrictions for any user, and
we will later see that in our Business scenario.

Based on the user and role specifications given in Table 6.1, we can begin
adding users to their role or roles. Starting with the simplest form of adding a
single user to a single role, let’s add user 'roberts' to the CEO role. Figure 6.20
shows the GRANT statement to add a user to a role.

FIGURE 6.20 Adding a user to the CEO role.

Following the idea of adding one user to one role, let’s now add user
 'garrett' to the CFO role, user 'chu'@'localhost' to the HR role, and user
 'sanford'@'localhost' to the CIO role. Figure 6.21 shows the three state-
ments that each adds one of those users to their role. The first and second
statement have a similar form to that in Figure 6.20. The third statement
contains an additional WITH ADMIN OPTION clause, which will give
the CIO the capability to manage (add or remove) the roles for a database
user.

120 • Database security

FIGURE 6.21 Adding a user to each of the CFO, HR, and CIO role.

Tip: The WITH ADMIN OPTION privilege allows a user to manage the roles of
other users.

The last addition to a role for our Business scenario involves adding all
of our database users to the base AllEmployees role. This task will use the
GRANT statement with multiple users in a comma separated list and one role,
as shown in Figure 6.22. We also issue this statement across multiple lines for
readability among the list of users.

FIGURE 6.22 Adding multiple users to a base role.

In the event that we need to remove a user from a role, we can also do
that. Such a need may arise if we incorrectly add the user to a role and must
undo that action. Other situations may require the removal of a user from a
role, and we will see as well as demonstrate that situation later in this chapter.
The general syntax to remove a user from a role is given in Figure 6.23.

roles • 121

REVOKE 'role'[@'hostname'](s) FROM 'user'[@'hostname'](s);

FIGURE 6.23 General SQL syntax to remove a database user from a role.

Listing, setting, and testing a user’s role

Now that we have added the users to their roles, we may wish to review the
roles in which a user belongs. In a similar manner to how we previously listed
a user’s directly assigned privileges in Chapter 5, we can also list information
about the roles to which a user belongs with the SHOW GRANTS statement,
using the syntax given in Figure 6.24.

SHOW GRANTS [FOR 'user'[@'hostname'] [USING 'role'[@'hostname'](s)]];

FIGURE 6.24 General SQL syntax to show a user’s privileges and roles.

In the simplest form of this statement, a user can review their own privi-
leges and roles by issuing the SHOW GRANTS statement itself. Let’s demon-
strate this with user garrett. Upon logging in, suppose garrett lists their priv-
ileges and roles. Figure 6.25 shows the result. We see a listing of privileges
that were assigned for other databases similar to before. We also see the roles
(AllEmployees and CFO) assigned to the user, highlighted in Figure 6.25 for
emphasis.

(Figure 6.25 shows all other privileges that were previously assigned to
that user for other databases, because for comparison and review, we kept
those databases and privileges). We will later return to other forms of the
SHOW GRANTS syntax shown in Figure 6.24.

FIGURE 6.25 User garrett listing their privileges and roles after logging in.

122 • Database security

Let’s explore further with user garrett. Suppose we wish to test that
user’s access to the BusinessRoles database. We may be in for a surprise,
because upon logging in, even though garrett has roles assigned for the
BusinessRoles database, we instead experience what is illustrated in
Figure 6.26.

FIGURE 6.26 User garrett initially with no access to BusinessRoles database.

We see in Figure 6.26 that garrett is unable to access the BusinessRoles
database either by choosing it with the USE keyword, or by retriev-
ing data with a SELECT. It seems that the CFO role—and even the
AllEmployees role—has no effect in regards to data access for the user,
even though the roles appear when the user lists their own privileges and
roles in Figure 6.25.

To understand why garrett does not have any access to the BusinessRoles
database, we must consider that before a role can take effect for a user, either
the user must set the role as active or change to the role, or an administrator
must set the role as a default for the user. A user can make a role active or
change to a role, by issuing the SET ROLE statement, whose general syntax
is given in Figure 6.27. To interpret this syntax, the | symbol represents a log-
ical OR that separates the alternativesin the curly {} braces. We must specify
exactly one of these alternatives. In this case we follow the SET ROLE key-
words with either a list of one or more comma-separated roles that are to be
active, the keyword ALL (which represents to make active all roles to which
the user is a member, or the keyword NONE (which represents that no roles
are to be active).

SET ROLE {'role'(s) | ALL | NONE};

FIGURE 6.27 General SQL syntax for a user to set their active role(s).

Let’s continue our demonstration by setting a role with user garrett.
Suppose garrett makes active the AllEmployees role, and issues SET ROLE
followed by the role name, AllEmployees, as shown in Figure 6.28.

roles • 123

FIGURE 6.28 Setting active and testing the AllEmployees role.

After setting the role, garrett successfully attempts to read the Budget
table. Data access seems as expected so far. Then garrett unsuccessfully
attempts to write to the Budget table. If we expected that garrett should have
read-write access to the Budget table, we should consider the role that was
made active allows for read-only access to Budget.

If garrett now lists their privileges and roles, we see a slightly different
result than before. As shown in Figure 6.29, compared to the listing in
Figure 6.25, we see the privileges provided by the active role (AllEmployees),
highlighted in this figure for emphasis.

FIGURE 6.29 User garrett listing their privileges and roles after changing roles to the
 AllEmployees role.

In order to write to Budget, garrett must make the CFO role active.
Figure 6.30 illustrates garrett making the CFO role active, followed by testing
for a successful read as well as write to the Budget table. Notice that garrett
could have also set both roles active by specifying both roles as a comma-
separated list.

124 • Database security

FIGURE 6.30 Setting active and testing the CFO role.

If garrett were to list their privileges and roles now, we would see the
CFO role privileges in effect, namely SELECT and UPDATE privileges to the
Budget table. These privileges are highlighted in Figure 6.31 for emphasis,
and the figure is edited for readability.

FIGURE 6.31 User garrett listing their privileges and roles after changing roles to the CFO role.

A few notes about roles as we end this example of setting a role to be
active or changing roles. First, a user can only change to or make active
a role to which an administrator has assigned the user. Second, when a
user issues a SET ROLE statement, any role that was active is no longer,
unless that role is represented among the list of roles specified in the new
statement.

roles • 125

The concept of setting a role to be active or changing roles may seem a
tedious and annoying step for most users, however it serves as a security mea-
sure. The goal is to abide by the principle of least privilege as much as possible.
Consider a situation where a user requires, say add, remove, and read-write
access to data only at certain times, and just read-only access the remainder
or much of the time. Because only read-only access is mostly needed, allow-
ing the user to have add, remove, and read-write access at all times compro-
mises the principle of least privilege and introduces security vulnerabilities.
However, if we have read-only access active for the user in general and allow
the user to change to read-write access when necessary, we maintain the prin-
ciple of least privilege and reduce such security vulnerabilities. Of course,
after adding, removing or writing data, the user would have to change their
role back to a less privileged one in order to maintain the principle of least
privilege when fewer privileges are needed. In a similar manner, setting active
all roles (with the ALL keyword as the role name) should be used with care,
but in certain cases may be necessary.

The default role

MySQL, MariaDB, and Oracle also provide a way for a user to have a default
role that immediately takes effect for the user as soon as that user logs into the
DBMS. A default role typically represents a minimal or baseline set of privi-
leges that we allow a user to have immediately upon logging in. Additionally,
a user must already be a member of the role that we assign as the default
role for that user. Because we already specified a minimal set of privileges
in the AllEmployees role and added the employees as members, we can set
the AllEmployees role as their default role, so its privileges are automati-
cally in effect when a user logs in. To assign a default role, we issue the SET
DEFAULT ROLE statement, which has a similar syntax to granting a role to a
user and is given in Figure 6.32.

SET DEFAULT ROLE {'role'(s) | ALL | NONE} TO 'user'[@'hostname'](s);

FIGURE 6.32 General SQL syntax to set a user’s default role.

Figure 6.33 shows how we can set a default role of AllEmployees to all
of the users in the Business scenario. This statement is issued across multiple
lines here for readability among the list of users.

126 • Database security

FIGURE 6.33 Adding the default role to users.

Tip: Before a role can affect a user’s data access, the user must first make the role
active, or an administrator must set the role as a default role for the user.

Now one of those users, such as user chu, can log in and have the effect
of the AllEmployees role immediately active without any additional steps.
Figure 6.34 shows user chu, after logging in, with a successful read attempt
of nonconfidential data on the Employee table, and an unsuccessful attempt
with confidential data. If chu were to list their privileges and grants, we would
see SELECT privilege is allowed for nonconfidential Employee data, because
of the default AllEmployees role that is active.

FIGURE 6.34 Testing the default role.

If user chu needs to access confidential Employee data, as well as to add
or remove data, the user must make the HR role active. Figure 6.35 shows
chu making the HR role active and accessing confidential data.

roles • 127

FIGURE 6.35 Setting active and testing the HR role.

Listing privileges and roles revisited

The inclusion of roles may increase the complexity of reviewing and recognizing
a user’s data access capabilities with privileges and roles, but we will see later
how roles can simplify the management of such data access. To describe the
methods by which a user as well as an administrator can review a user’s privi-
leges and roles, let’s return to other forms of the SHOW GRANTS statement
whose syntax was given back in Figure 6.24. For this discussion, we will see the
different ways in which we can see the privileges and roles for user roberts.

We mentioned that the simplest form of the SHOW GRANTS command
is where a user lists their own privileges and roles, and we did so previously
with user garrett. Figure 6.36a and Figure 6.36b (both edited for readability)
show what user roberts sees when showing their own privileges and roles.
Figure 6.36a shows the directly assigned privileges, the names of assigned
roles (highlighted for emphasis), as well as the privileges of the default role
that were made active upon logging in.

FIGURE 6.36A A user showing their privileges and roles, with assigned roles highlighted.

128 • Database security

Figure 6.36b shows the same listing but highlights the privileges provided
by the default role.

FIGURE 6.36B A user showing their privileges and roles, with privileges of default role highlighted.

The purpose of showing both listings describes how a user can review
their assigned roles and the privileges of the active role(s). roberts can make
active or change to the roles highlighted in Figure 6.36a, and after that, the
privileges provided by the active role(s) will appear in a manner like that in
Figure 6.36b.

From a user’s or administrator’s perspective, we can show a user’s privi-
leges and roles using the SHOW GRANTS statement like we did in Chapter 5.
This approach allows an administrator to review a user’s privileges, roles, and
privileges provided by roles. This approach also allows a user to do the same,
provided the user is assigned to the roles specified. Figure 6.37 (edited for
readability) shows how roberts or the administrator can list the privileges and
roles assigned to roberts. The assigned roles are highlighted for emphasis.
Notice no privileges are listed for the BusinessRoles database, not even those
for the default role.

FIGURE 6.37 Administrator listing of a user’s privileges and roles.

roles • 129

An administrator can also see a more comprehensive listing of a user’s
privileges provided by one or more roles. This approach uses an extended
form of the SHOW GRANTS that includes a USING clause which contains
a list of one or more roles. As before, a role may have an optional host or
network restriction, and multiple roles are given in a comma-separated list.
For each role specified, the privileges provided by that role are included in
the output. Figure 6.38 shows how we can obtain a comprehensive listing of
privileges for user roberts and the role AllEmployees (the output is edited for
readability).

FIGURE 6.38 Showing a user’s comprehensive privileges with the Employees role.

Compared to the output in Figure 6.37, we see in addition a listing
of indirectly assigned privileges provided by the AllEmployees role to the
Employee and Budget tables in the BusinessRoles database. This addi-
tional output contains the BusinessRoles database name and is highlighted
in Figure 6.38 for emphasis. Namely, in the two highlighted rows, we see
SELECT privilege for the nonconfidential data in the Employee table as
well as for all columns (specified by name) in the Budget table. Notice
the indirectly assigned privileges provided in this comprehensive listing is
similar to the privilege listing of the AllEmployees role, that was shown in
Figure 6.14.

We can obtain other comprehensive privilege listings for a user by
specifying another role or multiple roles for that user. For example, to
see the privileges for roberts provided by the CEO role, roberts or an
administrator can issue the SHOW GRANTS statement shown in Figure
6.39. The figure, edited for readability, highlights the privileges provided
by the CEO role.

130 • Database security

FIGURE 6.39 Showing a user’s comprehensive privileges with the CEO role.

If we wish to have a fully comprehensive listing of privileges for user rob-
erts and all the roles to which that user belongs (AllEmployees and CEO), we
can issue the statement shown in Figure 6.40. The output is edited for read-
ability, and the privileges provided by both roles is highlighted in this figure
for emphasis.

FIGURE 6.40 Showing a user’s comprehensive privileges and roles.

As with implementing any changes to the configuration of security con-
trols that manage access to data, we should issue various tests and confirm
whether the results are as expected. Namely, to evaluate the database secu-
rity provided by roles, we should verify that a user has their expected data
access requirements and nothing more. As examples, we should confirm that
in regard to the Employee table, non-human resources employees can access
only nonconfidential Employee data, while human resources employees can
also access confidential data. And in regards to the Budget table, only the
CEO and CFO personnel have read-write access to the Budget data but
everyone else has read access (recall we do not have the Notes column in the
BusinessRoles.Budget table at this time).

.

roles • 131

6.5 ROLES AND EVOLUTION

In Chapter 5, we assigned privileges directly to a database user as an effective
implementation with a database security control to manage a user’s access to
data. In this chapter, we used database roles as another effective way to indi-
rectly assign privileges to database users. However, the use of roles requires
us to additionally create and assign roles and may appear to involve more work
than if we directly assigned privileges. That may be the case at first; however,
once established, roles can greatly ease the management of user data access
requirements. To observe the differences between both approaches and the
benefits that roles can provide, let’s consider the following events that may
likely happen in practice over the evolution of an organization:

1. A new employee is hired

2. An employee moves from one position to another

3. An employee leaves their position or the organization

A new employee is hired

When a new employee is hired and begins work at a position, we will have
to manage the security controls to provide the necessary data access require-
ments for that user. We may take an approach to assign such privileges directly
to the user as we did in Chapter 5. However, as we have seen, we may have to
grant a number of privileges and/or specify a number of column names. Not
only may this be a tedious and time-consuming task, but with the more steps
and detail involved, we increase the possibility of introducing a security vulner-
ability with confidentiality or integrity by incorrectly including more privileges
than needed, or with availability by incorrectly omitting necessary privileges.

Let’s consider a new employee that is hired to start in human resources.
The new employee, with a username of smalls@localhost, has the same TLS and
CLS data access requirements for the other human resources employee chu@
localhost, that we defined in Chapter 5. If we create a new user account and
directly assign privileges to that user, we would have to issue the following steps:

 • create the user account;
 • grant SELECT, UPDATE, INSERT, DELETE privileges to the Employee

table, specifying all columns by name;
 • grant SELECT privilege to the Budget table, specifying all necessary col-

umns by name.

132 • Database security

The statements to carry out these steps are given in Figure 6.41. Notice
that we are assigning these direct privileges for the BusinessCLS database,
because we are not using roles here. We will use roles and the BusinessRoles
database shortly.

FIGURE 6.41 Adding a new user and directly assigning privileges.

As you may envision, this task may be time consuming and error prone,
especially if we were to have a number of new hires or frequently hire new
employees. On the other hand, if we have roles established, after we create
the new user’s account we only have to add the AllEmployees and HR roles,
and then set the default role, as outlined in these steps.

 • create the user account;
 • add the user to the AllEmployees and HR roles;
 • set AllEmployees as the default role.

While the number of steps is the same, the statements and details are
fewer and easier compared to if we assign privileges directly. Figure 6.42
shows the statements to carry out those steps with roles.

FIGURE 6.42 Adding a new user and assigning roles.

roles • 133

Now the new human resources user can login and immediately have
access according to the AllEmployees role. Should the new user require HR
role access, the user can make active the HR role.

An employee adds a role or moves to another role

As other changes that may occur within an organization, an employee may
have responsibilities added, in which case the employee takes on another
role. Similarly, an employee may change responsibilities altogether and
move from one role to another. Let’s demonstrate each case with the new
user account. We will also focus on management with roles only rather than
privileges. Suppose user smalls is to assist with CFO responsibilities and
needs the access to do so. We can add the CFO role to the user, as shown in
Figure 6.43.

FIGURE 6.43 Adding another role to a user.

The user can show their privileges and roles to see the role added to them.
Figure 6.44 illustrates the user showing their updated privileges and roles.
This figure suggests the AllEmployees role is active, but if the user were to
make the HR or CEO role active, those privileges would also appear.

FIGURE 6.44 A user showing their added roles.

If an employee is moving from one role to another, we would follow the
addition of the new role with the removal of the former role. The next event
describes that process.

134 • Database security

An employee leaves a role or the organization

As part of moving from one role to another, having responsibilities reduced, or
leaving the organization altogether (offboarded), we may have to remove a user
from one or more roles. To remove a user from a role, we use the REVOKE
statement, in a similar manner as we did to remove a user’s privileges.

Suppose user user smalls is moving from the HR to the CFO role. In
addition to adding the CFO role to that user, we must remove the user from
the HR role, as shown in Figure 6.45.

FIGURE 6.45 Removing a role from a user.

User smalls or the administrator should now see the move of role assign-
ments from HR to CFO complete. The user or administrator can confirm
that by reshowing the user’s privileges and roles. Figure 6.46 illustrates the
administrator showing the user’s current privileges and roles.

FIGURE 6.46 Administrator showing a user’s changed roles.

Organizations will have different procedures regarding employee off-
boarding. For example, an organization’s policy for employee offboarding may
involve simply disabling the employee’s account(s), or may instead or addi-
tionally involve removal of roles or privileges from the employee account(s).

roles • 135

To remove the user from all roles and privileges, or certain roles or privi-
leges, we can use REVOKE statements like the one in Figure 6.44. In order to
ensure applicable privileges and roles are removed, the administrator should
list the user’s privileges and roles to see those that are assigned and revoke
them. The administrator should list the user’s privileges and roles to confirm
the applicable ones have been removed.

Should we actually want to remove a database user account and/or a role,
we can do so with the DROP statement. We described in Chapter 4 how
to remove a database user’s account in this manner. Removing a database
user account also removes any privileges and role that were assigned to that
account. Care should be taken when removing a database user and/or a role,
because data that was managed by that user or role may require a certain set
of privileges. And removing the account and/or role may complicate or intro-
duce challenges with accessing that data in the future.

6.6 SUMMARY

In this chapter, we looked at the use of roles to manage a large number of
users more easily and efficiently. We also described and demonstrated a num-
ber of concerns that may affect the security that we want especially in an
evolving environment. We also described the principle of least privilege and
put it to use to help mitigate those concerns. In the next chapter we continue
with various security mechanisms that can provide confidentiality for user
accounts and data.

C H A P T E R 7
database seCurIty Controls for
ConfIdentIalIty

So far, we have covered a range of database security controls and measures,
including database design and the use of database users, roles, and privileges.
In addition to those security controls and measures, we have other mecha-
nisms that we can employ to provide a greater degree of security to a database
and its data. In this chapter, we explore a variety of these mechanisms.

7.1 VIEWS

In many situations, we may want to allow or deny access to certain data for
viewing, insert, modification, or delete purposes. By doing so, we can impose
additional data allowances or restrictions to specify what data a user may see
or access for a given database operation. The concept of a database view is a
flexible way to implement this concept.

Concept of a view

While the idea of a database view to allow or deny a user’s ability to access
data by table, column, or row may seem similar to that of table-level, column-
level, and/or row-level privileges, database views also provide additional fea-
tures. First, a database view can additionally process data into an aggregated
form that we can present to the user, rather than present the raw data itself.

138 • Database security

By hiding the raw data in this manner, a view can provide confidentiality or
anonymity of an individual associated with a particular data value.

To illustrate this idea, consider a case example for a class of students that
take an exam, and afterwards each student receives their own exam score. The
instructor then wishes to share information about all exam scores to all those
students. Of course, if the instructor were to release a list of scores and names
associated with each score, a student would know the grade of another stu-
dent. But even if the instructor withholds the names and releases only a list of
exam scores, we still have a risk of compromising confidentiality or anonymity
because a student may still be able to derive the score of another student.
To see how, suppose two rival students often have the highest scores and
wish to keep their scores confidential from each other. One of these students
obtains a 99 out of 100, and the other obtains a 91. Even if only scores were
shared to all students, the student that received the score of 99 could infer
the other student obtained a score of 91, and the student that received the 91
could infer the other student obtained a 99. Instead, if the instructor were to
aggregate the scores and release only the average or median score, then one
could not infer the score of the other (that is, provided there are three or more
students that took the exam). Thus, confidentiality of scores and anonymity of
who is associated with a particular score is upheld.

As another case example, consider a medical patient data scenario that
includes social security number (SSN), first name, last name, date of birth,
weight, height, blood pressure, cholesterol level, and COVID vaccination sta-
tus of fully vaccinated, partially vaccinated, or unvaccinated. Even without SSN
and names included in the data, a release of that data in raw form may still
allow one to associate an individual as one of those patients. For example, if one
knows a person who has the same date of birth, weight, and height as that of
one of the patients in that data, one might infer that person has the blood pres-
sure, cholesterol level, and vaccination status of that patient. As a result, we
have a potential compromise to the anonymity of the patient to whom the data
belongs, as well as the confidentiality of the patient’s protected health informa-
tion or personal health information. On the other hand, if we were to portray
only information about COVID vaccinations among patient age groups, we
could create a view that portrays the percentages of fully vaccinated, partially
vaccinated, and unvaccinated patients within the defined age groups.

In these and similar cases, we can specify that a database view will portray
a sum, average, count, or other aggregate calculation of the data, and not the
actual raw data values. Thus, confidentiality and anonymity are maintained.

Database security controls for confiDentiality • 139

Such a distinction between portraying the data values in raw form or a pro-
cessed form is not possible with only the use of database table-, column-, and/
or row-level privileges.

To demonstrate the security risks and to demonstrate the solutions we can
provide with views in our medical patient data scenario, suppose we have the
data to a set of patients as shown in Figure 7.1.

FIGURE 7.1 Patient data for our medical case study.

As you may already notice, Figure 7.1 contains quite a bit of personal and
medical information. Such information is considered personally identifiable
information (PII) as well as protected or personal health information (PHI).
Both types of information should have limited access to preserve their confi-
dentiality. There are a number of security solutions that we can implement to
limit access of that information to only that required for a particular task. For
example, based on the actual need, we may process and portray data related to
only blood pressure, cholesterol levels, and/or vaccination status and keep the
remainder of the data confidential. We can also consider whether we want to
process and portray information about a collection of data, say for all ages, or
only within certain age groups. Let’s begin with the latter scenario and suppose
that we want to permit processing and portrayal of data for only adult patients
(18 years of age or older) or for only minor patients (below 18 years of age).

Creating a view

To allow processing and portrayal of only the data for adult patients, we can
create a view that allows a database user to only see or access Patient table rows
that correspond to an age of 18 years or older. If we want to allow access to all of

140 • Database security

the columns of the Patient table but only for those certain rows, we can define
a view like that given in Figure 7.2. In Figure 7.2, we use the CREATE VIEW
statement, followed by the name to use for that view, the AS keyword, and finally
the SQL statement that specifies what data the view is to access and contain. In
our case, we are specifying all columns for the rows that have a calculated age of
18 or greater. Also notice that we first choose the MedicalCaseStudy database,
which has a Patient table that contains the data in Figure 7.1.

FIGURE 7.2 Creating a database view to access only rows of adult patients.

We can show all of the data allowed by the view by issuing the SELECT
statement given in Figure 7.3. Here, we are issuing this statement as the root or
database administrator user (we will soon explain what is needed to allow a view
to be used by a nonadministrative user). Note that we simply provide the name of
the defined view rather than the name of the table from which the data is derived.

FIGURE 7.3 Using the PatientAdult view to show only rows of adult patients.

Database security controls for confiDentiality • 141

The general syntax to create a view is given in Figure 7.4. By default, a
view shows the columns specified in the SELECT list with column names that
are the same as those in the table. On the other hand, if we want the view to
show alternative column names for the table columns, we can specify after
the view name an optional list of column names that are to be presented in
the view. Such column renaming can be helpful if we want to represent a
column’s value or values with a certain context or more accurate description
of the data. We demonstrate this later then we process the data in a column,
and the data in the result of the processing has a different context than that of
the original column name.

CREATE [OR REPLACE] VIEW view_name [(column_list)]

AS select_statement;

FIGURE 7.4 General syntax to create a database view.

Showing a list of views and a view definition

To see the actual definition of a view, we can issue the SHOW CREATE state-
ment, as demonstrated in Figure 7.5 for the PatientAdult view. Figure 7.5 is
edited for brevity, and your actual output may contain other lines or informa-
tion than that portrayed here.

FIGURE 7.5 Showing a database view definition.

If we want to obtain a list of views by name, there are two general
approaches. The first approach is to see only a list of names to defined views
(and not of tables) for the currently selected database. In Figure 7.6, we issue
a SHOW FULL TABLES statement to do just that. Note the where clause
limits the result to contain only views.

142 • Database security

FIGURE 7.6 Showing a list of views in the current database.

The second approach to list the names of views is to use the familiar SQL
command that shows a list of names to tables in the current database, as shown
in Figure 7.7. The resulting list contains the names of views as well as tables
in the current database.

FIGURE 7.7 Showing a list of views and tables in the current database.

Accessing the data of a view

You may wonder why views are listed with tables in Figure 7.7. The reason
is that in a relational database system, both tables and views both have
the properties of a relation and technically are relations. With that idea
in mind, we can access a view in the same manner as we can a table. We
can even assign or restrict user and role privileges to a view, just as we
can for a table! To demonstrate the assignment of a privilege to a view, in
Figure 7.8 we create a new user 'sally'@'localhost' and then assign sally
only the ability to issue a SELECT operation that can retrieve data in the
PatientAdult view.

Database security controls for confiDentiality • 143

FIGURE 7.8 Creating a new database user and assigning a privilege to access a view.

Now user sally can log into the DBMS locally, and retrieve data from the
PatientAdult view, as demonstrated in Figure 7.9.

FIGURE 7.9 Demonstration of allowed privileges with a view.

However, sally has no other privileges for other operations such changing,
adding, or removing data. Figure 7.10 illustrates the restriction of those types
of accesses to the data provided by the view.

FIGURE 7.10 Demonstration of restricted privileges with a view.

144 • Database security

Also note that while user sally has restricted access to the data provided by
the PatientAdult view, sally has no access whatsoever to the Patient table and
its data, maintaining security of that data through confidentiality. Figure 7.11
shows an attempt by sally to retrieve data from the Patient table. Other oper-
ations to add, change, or delete data are similarly denied.

FIGURE 7.11 Demonstration of disallowed access to a view’s table.

Security considerations of a view

Before we proceed with defining a similar view to process and portray only
patient data for those under the age of 18, let’s consider a possible security
concern with our PatientAdult view that was just created. The security con-
cern involves the use of the * wildcard in the SELECT list, which gives the
view access to all columns in the table. Even though we may want to allow a
view to have access to all columns, as in this case, we should still specify in the
SELECT list all of the columns by their names instead. By doing so we can
avoid the risk of compromising confidentiality that inadvertently allows access
to newly added columns that actually should be inaccessible to the view.

To demonstrate this security concern, suppose that after we received the
requirements for the adult and minor patient views, a new column is added to
the Patient table. Let’s say this column is named nInfections and maintains a
count of the number of COVID infections for a patient. However, this number
of infections is not to be processed or portrayed by the PatientAdult or soon-
to-be created PatientMinor views. Because we created the PatientAdult view
before we add the new column, we specified the * wildcard with the belief that
all those columns in the Patient table (at least, at that time), are to be accessible
by the view. But if we were to create a view with the * wildcard after the new
column is added, the new view will contain the new column that we really want
to keep confidential. To illustrate this concern, let’s say that a database admin-
istrator adds the nInfections column with the statement given in Figure 7.12.

FIGURE 7.12 Adding a new column to the Patient table.

Database security controls for confiDentiality • 145

Afterwards, the (possibly other) user that is creating the views defines the
view for patients under the age of 18—that is, for minor patients—as given in
Figure 7.13.

FIGURE 7.13 Creating a database view to access only rows of minor patients.

Running both views that we now have, we see that the view created before
the column is added does not contain the new column, which is what we want,
but the view created afterwards does. Figure 7.14 shows the data portrayed
by the PatientAdult view. Notice the absence of the nInfections column with
the PatientAdult view.

FIGURE 7.14 The data of the PatientAdult view after adding a new column.

Similarly, Figure 7.15 shows the data portrayed by the PatientMinor view.
Notice the inclusion of the nInfections column.

146 • Database security

FIGURE 7.15 The data of the PatientMinor view after adding a new column.

We can also illustrate the inadvertent inclusion of the nInfections column
with the PatientMinor view by showing its view definition. Figure 7.16 shows
the PatientMinor view definition, with the output edited for brevity.

FIGURE 7.16 Showing the definition of the PatientMinor view.

Consequently, by creating a view with the * column wildcard, we run the
risk of compromising the confidentiality of newly added columns, as well as
having an inconsistent access of data by similar views (that is, one view access-
ing one set of columns and the other view accessing another set).

As another reason to avoid the use of the * wildcard when defining the
columns to be accessible in a view, consider that we create another security
vulnerability—this time with availability—if any columns are later removed
that were originally included by the * wildcard. In particular, when a view is
defined with a * column wildcard, the names of all of the columns are implic-
itly added to the view. If a column is later removed from the table and the
view is accessed, the view will attempt to access the removed column, which
generates a failure and lack of availability to the contents of the view.

To illustrate this introduced vulnerability of availability, in Figure 7.17
we drop the nInfections column, and then (unsuccessfully) attempt to

Database security controls for confiDentiality • 147

access the contents of the PatientMinor view. Note, however, that the
PatientAdult view is not affected by the removal of that particular column
because PatientAdult was created before the nInfections column existed.
But if we were to drop a column that is part of the PatientAdult view
definition, we will introduce a similar vulnerability of availability for that
view.

FIGURE 7.17 Removing a column and compromising view availability.

In both cases, if we were to have initially defined the views with explicit
column lists rather than column wildcards, then we can avoid such issues. In
the first case, we could later add columns to the table without creating a secu-
rity vulnerability of compromising their confidentiality when those columns
are not to be accessible by the views. In the second case, if we were to drop a
column that was not in the column list for the view, then we will also not risk
availability when accessing that view.

As another example of the security vulnerabilities that can be introduced
by defining a view with a * wildcard, suppose we now need to keep data about
patient revaccinations and add a column for that purpose in the Patient table.
We then create a view to access all the other Patient table columns (not the
revaccination data) for patients 65 years of age or older, but happen to specify
a * column wildcard. As before, we introduce a security vulnerability of con-
fidentiality by allowing inadvertent access to the revaccination data. On top
of that, we then change our decision about keeping revaccination data and
later remove that column. Now when that view is accessed, it will attempt
to access all of the Patient columns that existed at the time the view was cre-
ated. Because the revaccination data column existed at the time that view
was created, that column is part of the view. However, because that column
no longer exists, the view is incomplete, causing an error within the DBMS
system. In Figure 7.18, we add a RevaccinationStatus column to the Patient
table and create a new view of all Patient columns with the * wildcard. We
then remove the RevaccinationStatus column and access the view, which in
turn accesses the removed column and generates an error. We then remove
the now incomplete view.

148 • Database security

FIGURE 7.18 An Introduced security vulnerability involving availability.

Deleting and redefining views

To show the proper way to define these views and to demonstrate how
they mitigate the risks we mentioned, let’s define the PatientAdult and
PatientMinor views with a list of specific column names. Because we already
have views defined with those names, we can either delete the views and
then recreate them or replace an existing view with a new definition. Let’s
describe both approaches, starting with deleting and recreating the views.
To delete or drop the views, we can use the DROP VIEW statements given
in Figure 7.19. For security measures, we should also consider dropping
the PatientSenior view to prevent any future access potential, even though
it currently fails.

FIGURE 7.19 Deleting views.

We can then properly define the views with the original view names like
before, but this time to have a higher degree of security by specifying a list of
allowed columns by name, as given in Figure 7.20.

Database security controls for confiDentiality • 149

FIGURE 7.20 Properly defining views with a column name list.

Alternatively, we can also redefine an existing view without first deleting
the view by using a variation of the CREATE VIEW statement, as shown in
Figure 7.21. Here we use the CREATE OR REPLACE VIEW statement, to
replace the existing definition of the PatientAdult and PatientMinor views
with the definition that follows. When using this statement, if a view does not
already exist with that name, the statement effectively creates a view with that
name and definition.

FIGURE 7.21 Replacing an existing view’s definition.

You will now notice that neither view specifies the nInfections column.
Thus, the nInfections data is not accessible with these views, maintaining con-
fidentiality of that data if the column were to be later added to the Patient
table. Figure 7.22 repeats the demonstration of adding the nInfections col-
umn and showing the data of those views, but now both views do not include
the nInfections column and thus maintains that confidentiality. For brevity,
the statements that access both views retrieve only one row and the result
edited.

150 • Database security

FIGURE 7.22 Adding a column and maintaining its confidentiality.

Furthermore, if there is a future data change that involves removing the
nInfections column, we can now safely remove that column without adversely
affecting the functionality of our two views, as shown in Figure 7.23. For brev-
ity, we likewise retrieve only one row in Figure 7.23 and edit the resulting
output to remove extra lines.

FIGURE 7.23 Removing a column and maintaining view availability.

Consequently, even though specifying columns by name rather than wild-
card when defining a view may be tedious and increase the length of the
defining SQL statement, we must keep in mind the risk of compromising the
principle of least privilege that occurs when using a wildcard for all columns.
Recall that we encountered a similar concern when defining access to all table
columns with column-level privileges in Chapter 6.

Views and multiple data access requirements

As another example of limiting data access with views, let’s consider a
situation where we may have multiple access requirements for the same

Database security controls for confiDentiality • 151

data. Suppose that we want a user to access only certain patient data,
such as first and last name, but not their vaccination status, in order to
keep a certain patient’s vaccination status confidential to the user. In
addition, suppose that we do want to allow that user to have access to
the percentage of patients that are fully vaccinated but not other PII
or PHI. In other words, we do not want the user to have direct access
to the VaccinationStatus column, but the user will have to be able to
access the VaccinationStatus column somehow to obtain the percent-
age of fully vaccinated patients. If we were to consider database col-
umn-level privileges for this situation, we could satisfy one requirement
but deny the other. More specifically, we would either deny access to
the VaccinationStatus column (which would fulfill the first data access
requirement but not the second) or allow access to the VaccinationStatus
column (which would fulfill the second data access requirement but not
the first). However, with the use of database views, we can fulfill both
data access requirements!

To accomplish both data access requirements, we will define two
views: one that provides the first requirement and another that provides
the second. The first view will allow access to the patient FName and
LName only. The second view will access the VaccinationStatus column to
calculate the percentage of patients that are fully vaccinated. Figure 7.24
shows how these two views may be created. Notice that we define the
FullVaccinatedPercentage view to show the result with a descriptive col-
umn name of PercentageFullyVaccinated.

FIGURE 7.24 Creating two views to support multiple data requirements to the same data.

As shown in Figure 7.25, now the user can access both views and obtain
the necessary information for a given purpose without compromising any
other data.

152 • Database security

FIGURE 7.25 Demonstrating multiple access requirements to the same data.

Database security controls for confiDentiality • 153

As another example of limiting data access with views, let’s consider that
we want to access information about vaccinations without compromising
anonymity or confidentiality. In other words, we want to permit access to
the Vaccination column but not to the SSN, FName, LName, DOB, Height,
Weight, Systolic, Diastolic and Cholesterol columns. We can define that lim-
ited access with one or more views that process rows by DOB and limit what
is accessible and portrayed from that data.

While this use of views to restrict access to certain columns may also seem
similar to using column-level database privileges, consider that privileges are
specified for users and roles. As we saw in the last example, a user or role may
require access to certain data one context but should be denied access to that
same data in another context. The use of views allows that flexibility whereas
user and role privileges cannot.

Views should be considered a supplement, rather than an alternative, to
user and role table-level, column-level, and even row-level privileges. User
and role privileges can establish necessary access but views can refine that
access and provide more options and capabilities of accessing data while keep-
ing data secure. Additionally, a view can restrict access to columns or rows of
data in a DBMS that does not have full column-level or row-level privileges.

7.2 ENCRYPTION, DECRYPTION, AND HASHING

At times, we may have situations where we must store data in a table but also we
want to keep that data confidential, even if one has access to retrieve that data.
As an example, say we need to store a user’s credit card number. If we were to
store the number, any user, role, or view that has access to that data can access
the stored credit card number. We cannot rely on user or role column-level privi-
leges alone for a security measure here, because we need to allow each user
access to the column in order to access their credit card column value; therefore,
we cannot completely deny a user access to that column. Additionally, we want
to protect the confidential data in the event of a compromised privileged account
or a malicious user that is able to obtain privilege to access and see the data.

In these situations, we cannot store the data in raw or plaintext form,
otherwise a user, role, or view that has access to the data can clearly
see the confidential data. If we were to store the credit card number in

154 • Database security

plaintext form, any user, role, or view that has access to that data can
clearly see the stored number. We need a way in which we can employ
confidentiality so that, should an unauthorized user or role gains access
to the credit card data, we do not want the number to be revealed. But
if an authorized user or role does access the credit card data, we do want
the number revealed.

Encryption

The typical solution to this confidentiality problem is to employ encryption
or techniques that scramble the data into ciphertext, or a form that seems
undecipherable to the plaintext, and store that instead. That way, if one were
to look at the stored ciphertext, they could not determine the original plain-
text. However, with the proper credentials, one could decrypt or convert the
ciphertext back to its plaintext and then obtain the plaintext content.

Typically, we use passwords or passphrases as the credential to encrypt
the plaintext into ciphertext and decrypt the ciphertext into plaintext. There
are two forms of encryption: symmetric key and asymmetric key. Both forms
are supported by MySQL, MariaDB, and Oracle DBMSs. Symmetric key (or
shared key) encryption uses the same key (such as a password or passphrase)
to encrypt as well as decrypt. In other words, for the decryption of ciphertext
to be successful, one must provide the same key that was used to encrypt that
ciphertext. On the other hand, with asymmetric (or public key) encryption,
one key is used for encryption and another key must be used for decryp-
tion. The two keys are generated beforehand as a key pair, such that one key
encrypts and other decrypts. Our examples use symmetric key encryption,
although the same approaches can be used for asymmetric key encryption by
using one key (typically a user’s public key) to encrypt and the corresponding
other key (typically the same user’s private key) to decrypt.

We will demonstrate encryption and decryption using the advanced
encryption standard (AES), which is widely accepted as the most secure
encryption approach because AES ciphertext is virtually impossible to convert
back to plaintext without the proper key. To encrypt data in our DBMS, we
use the AES_ENCRYPT function, whose basic syntax is given in Figure 7.26.
The first argument is the plaintext data in string form, and the second argu-
ment is the encryption key, such as a password or passphrase. The function
returns the generated ciphertext.

Database security controls for confiDentiality • 155

AES_ENCRYPT(plaintext,key);

FIGURE 7.26 Basic syntax to encrypt with AES.

To obtain a better understanding of how we can encrypt and decrypt data,
let’s go through a standalone example before looking at data that is stored in
a database. We will use symmetric encryption to encrypt some plaintext (in
this case “my secret data”) with a simple password (in this case “mykey”), as
shown in Figure 7.27.

FIGURE 7.27 Encrypting with AES and showing the generated ciphertext.

The AES_ENCRYPT function returns the ciphertext as a binary string or
a sequence of byte values, not a character string. This is because some of the
AES ciphertext may not be representable as alphanumeric symbols. As such,
the SELECT statement in Figure 7.27 shows the ciphertext in hexadecimal or
base 16 format. We don’t need to explain hexadecimal in depth for our pur-
poses—just consider that a hexadecimal symbol consists of the digits 0 to 9 as
well as the letters A to F, allowing 16 possible values per symbol, or base 16.
Two hexadecimal symbols together represent one byte value, which is in the
range of 0 to 255 decimal. So in Figure 7.27, after the 0x prefix that indicates
a hexadecimal value follows, the 32 hexadecimal symbols represent 16 bytes
of ciphertext.

Decryption

To decrypt the ciphertext back to the original plaintext, we can use the AES_
DECRYPT function, whose basic syntax to decrypt is given in Figure 7.28.

AES_DECRYPT(ciphertext,key);

FIGURE 7.28 Basic syntax to decrypt with AES.

156 • Database security

The distinction between the ciphertext as a binary string and a char-
acter is important, because we must provide that ciphertext as a binary
string to properly decrypt back to the original plaintext. One way we
can do that is to provide the given ciphertext hexadecimal representation
with the 0x prefix but no quotes, which is the approach we will use to
decrypt. In this manner, we can decrypt the ciphertext that we just cre-
ated and see the resulting plaintext, by issuing the SELECT statement
given in Figure 7.29.

FIGURE 7.29 Decrypting with AES and showing the generated plaintext.

AES_DECRYPT also returns a binary string and not a character string, so
in order to see the character representation of the resulting plaintext, we must
convert the result into a character format. We can accomplish that task with
the CAST function, which in this situation takes as an argument the binary
string result generated by AES_DECRYPT, and then we specify AS CHAR to
convert that argument into a character format.

Hashing

While we can provide a password or passphrase as the key for AES_ENCRYPT
or AES_DECRYPT, it is considered more secure to pass a hashed form (or
more simply called, hash) of the password or passphrase instead. A hash is a
scrambled representation of data, which may sound like encryption but rather
is a one-way scrambling, in that a hash cannot be unscrambled back to the
original data. By providing a hash form of the password or passphrase dur-
ing encryption, we can encrypt with an additional level of security compared
to encrypting with the password or passphrase alone. This further protects
the encrypted ciphertext (password or passphrase) against attacks that involve
password guessing or password cracking.

Database security controls for confiDentiality • 157

There are a number of hashing methods that we can use, although the one
considered to be most secure is the secure hash algorithm (SHA). There are
actually three SHA versions: SHA1 (sometimes called just SHA), SHA2, and
SHA3. Currently Oracle, MySQL, and MariaDB natively support SHA1 and
SHA2. SHA2 is more secure than SHA1 and, of these two, should be used when
available. We can generate an SHA2 hash into 256, 384, or 512 bits (or 64, 128
hexadecimal symbols), and we can represent that as SHA-256, SHA-384, or
SHA-512, respectively. The larger the number of bits, the more secure the hash
value against two different plaintext data sets hashing to the same value (known
as a collision), as well as against reversing the hash value back to the plaintext. At
this time, SHA-256 is considered secure (and U.S. government agencies even
require hashes to be generated with SHA-256), though SHA-384 and SHA-512
can provide even higher security against collisions or reversing.

To generate an SHA2 hash of 256 bits, we can issue the SHA2 function
with two arguments. The first argument is the plaintext and the second argu-
ment is the number of bits for the hash, in this case 256. Figure 7.30 generates
and shows the SHA2 hash value of 256 bits for the plaintext “myplaintext”. In
this example, the hash value is the sequence of 64 hexadecimal symbols that
starts with 8cde. Because SHA2 returns a character string and not a binary
string, the result is not prefixed with 0x.

FIGURE 7.30 Generating and showing an SHA2 hash.

To see the resulting ciphertext that combines SHA2 256 bit hashing with
a key to make the previous encryption example more secure, we can issue the
statement given in Figure 7.31. Notice that we are providing the hash value
of the key rather than the key itself. And recall that AES_ENCRYPT returns a
binary string, hence the resulting ciphertext is prefixed with 0x.

158 • Database security

FIGURE 7.31 Generating and showing ciphertext encrypted with an SHA2 hash.

To decrypt ciphertext that was encrypted with a hashed key, we must also
provide that same hashed key as the decrypt key. Figure 7.32 demonstrates
how we can decrypt the ciphertext that we just encrypted with the hashed key
and see the resulting plaintext.

FIGURE 7.32 Decrypting with an SHA2 hash and showing the result.

Now to actually storing and using the encrypted ciphertext in a database. To
store ciphertext in a table column, we must use a binary data type for that col-
umn. Typical DBMS binary data types for this purpose include VARBINARY,
TINYBLOB, BLOB, MEDIUMBLOB, and LARGEBLOB. When using the
VARBINARY type, to determine the column size using AES, we take the length
of the plaintext and round up to the next higher multiple of 16. As examples,
for plaintext lengths of 0 to 15 bytes, the AES ciphertext is exactly 16 bytes.
For plaintext lengths of 16 to 31 bytes, the AES ciphertext is exactly 32 bytes,
and so on. BLOB is short for Binary Large OBject, and its variations define the
maximum size of the binary data. Specifically, TINYBLOB can store up to 255
bytes, BLOB up to 64KB-1 bytes, MEDIUMBLOB up to 16MB-1 bytes, and
LARGEBLOB up to 4GB-1 bytes of binary data or ciphertext.

To demonstrate the use of stored encrypted data, as well as the stor-
ing of a password credential and its use for authorization, suppose we
have a PatientCredentials table that contains three columns: PatientId,
CreditCardNo, and one for the user password. We have the CreditCardNo
data type defined as VARBINARY(32), because we are assuming a typical
credit card number of 16 character digits without dashes, and 19 characters
if three dashes separate the number in xxxx-xxxx-xxxx-xxxx format. With those

Database security controls for confiDentiality • 159

assumptions, the next higher multiple of 16 is 32. We will get to the data type
for the password later.

Suppose we want to encrypt a patient’s credit card number with that
patient’s password and store the resulting ciphertext. If patient P01 has a credit
card number of 1111-2222-3333-4444 and a password of 'P01StrongPassword',
we can store the hashed, encrypted credit card number with a statement like
that given in Figure 7.33.

FIGURE 7.33 Storing an encrypted credit card number.

Later, if we need to access and reveal the credit card number, we can
prompt the user for the password to decrypt and reveal the credit card num-
ber. To decrypt the patient’s stored credit card number to access and show its
plaintext value, we can issue a statement like that given in Figure 7.34.

FIGURE 7.34 Decrypting a stored credit card number.

Turning to the stored password, let’s assume the user previously pro-
vided that password for future authentication purposes. As such, we can later
authenticate that user by asking the user for their password and comparing
the response with the stored password. If the comparison is successful, we
consider the user to be authenticated. However, we cannot store a password
in plaintext form, or any user, role, or view that has access to that column
can clearly see the password itself. As with the credit card number example,
we cannot rely on user or role privileges alone for a security measure either.
Consequently, we must store the password in a form other than plaintext for

160 • Database security

confidentiality purposes. Notice that encryption is not a good solution for this
purpose, because if we use encryption and the key that encrypts the password
is compromised, that password (as well as possibly all other passwords in the
system) is also compromised. For example, if a system were to use a single key
to encrypt all user passwords and then decrypt a password for authentication
purposes, we have a huge security vulnerability. Namely, if that key is com-
promised, all user passwords can be decrypted and are thus compromised.

It turns out that hashing is a typical solution to securely store a password
in a nonplaintext form. A given hashing method will generate a hash of a
fixed number of bytes. As a result, when using the same hash method, any
password’s hash value will be the same length, regardless of the length of the
password itself. Hence, one cannot determine the possible length of the pass-
word based on the length of the hashed password. Consequently, a malicious
user that attempts to compromise a password gains no clue about the length
of the password by looking at the hashed password.

However, because a hash is a one-way scrambling of plaintext data into its
hashed form, we can convert plaintext data into a hashed form, but we cannot
convert a hashed form back into the original plaintext. We can solve this matter
by asking an authenticating user for the proper password, hash that provided
password, and then compare that result against the stored hashed password.
If both hashes match, we consider the password provided for authentication
matches the initial password that was hashed and stored, and thus authenti-
cation is successful. If the hashes do not match, then we can say the password
provided for authentication does not match the previously hashed and stored
password, and authentication was unsuccessful.

To see this approach in action, consider that the user with UserId P01
is providing the password 'P01StrongPassword' in Figure 7.35 for future
authentication. Here we store the hashed password in a column appropriately
named HashedPassword. The column has a data type of 64 characters to hold
the 64 hexadecimal characters that represent the 256 bit hash value.

FIGURE 7.35 Storing a hashed password.

Database security controls for confiDentiality • 161

We can later authenticate that user by asking them for the correct
 password, hashing that, and comparing the hashed result against the
stored hash. Figure 7.36 shows the two hashed values for comparison
purposes, starting with the hashed result of the user-provided password
'P01StrongPassword' and then the stored hash.

FIGURE 7.36 Hashing an authenticating password and showing the stored hash of the previously set
password for a match and successful authentication.

To illustrate an unsuccessful authentication attempt, suppose the user
provides 'P01WrongPassword' as the authenticating password. Figure 7.37
shows the generated hash of that password, which in this case is different than
the stored hash.

FIGURE 7.37 Hashing an authenticating password and showing the stored hash of the previously set
password for an unsuccessful authentication.

162 • Database security

Salting

Many password-based mechanisms use an additional security control that helps
make the password less susceptible to certain password attacks. This control,
called salt, essentially strengthens the password by making it longer in a unique
manner. One benefit provided with password salt is that when two users use
the same password, the stored password hash is different among them. Such a
difference in hash values does not give an attacker any clue when the two users
use the same password. So if the attacker were to somehow obtain a list of a
system’s stored password hashes, and somehow compromise the password of
one of those two users, the visual difference in hash values does not indicate that
password would authenticate the second user. A second benefit is that password
salt makes a password stronger, so even a less-than-ideal password can be made
stronger and less susceptible to various password cracking attempts. Another
benefit with password salt is that a password can become very resistant to rain-
bow table attacks, where an attacker attempts to speed up the process of pass-
word cracking by comparing a hashed password against a precomputed list of
hash values based on password guesses. The inclusion of an arbitrary salt value
means that an attacker must also include that salt value when precomputing a
list of hash values for that attack. Otherwise, the precomputed list will be of no
use with compromising that password.

To demonstrate the use of password in our current example, suppose
that patient P02 sets their password also to 'P01StrongPassword'. Figure 7.38
issues a statement to set that password.

FIGURE 7.38 Setting the same password for another user.

Now, if an attacker was to get access to the stored password hashes,
the attacker could realize that the passwords for patients P01 and P02 are

Database security controls for confiDentiality • 163

the same, because their password hashes are identical. Figure 7.39 illus-
trates this observation. For a full comparison, Figure 7.39 shows different
stored password hashes for all the other users, indicating they each have a
unique password. In setting up this example we previously set the password
for patient Pxx to 'PxxStrongPassword', so that patient P03 has the password
'P03StrongPassword', patient P04 has 'P04StrongPassword', and so on, up to
patient P15 with 'P15StrongPassword'. Horizontal line separators have been
removed from 7.39 to shorten it.

FIGURE 7.39 Showing stored user password hashes.

To add salt to a password, we must first have a unique value associated
with each user. Often this value is a number generated by the system as a
random, unique value during creation of that user’s account or—as a more
secure measure—each time a user changes their password. In our case,
we will add a column named Salt to the PatientCredentials table, as in
Figure 7.40.

164 • Database security

FIGURE 7.40 Adding a column to store a patient’s salt value.

We chose for the Salt column a character type of 32 bytes, as we will use
SHA2 hashing against the system clock to create a virtually unique 256 bit
value. While 256 bits may seem overkill, as many systems use only a 32 bit
salt, it is often recommended to use a salt of the same size generated by the
hashing method.1

Now to add the salt values for each user. In Figure 7.41, we add the salt
for Patient P01 by obtaining the system clock with a resolution down to micro-
seconds with the NOW(6) function, then hashing that result with SHA2 to
generate a 256 bit hash. The argument of 6 that we provide to the NOW func-
tion specifies 6 digits of precision, thus giving us microsecond resolution. We
then store that hash result as a 32 byte (or 64 hex symbol) text string.

FIGURE 7.41 Setting the salt value for a user, in this case Patient P01.

We then want to repeat that operation for all of the other users.
In Figure 7.42, we reissue that same statement for Patient P02. To illustrate
the generated salt values, we then show the salt values generated thus far in
the PatientCredentials table. Notice that because the salt value is based on
the system clock, the salt values shown in Figure 7.42 will most likely not
match the ones you obtain.

1While there may be other means available to generate a salt value with a truly (or more truly) random value and with
a larger range, we use the system clock for a more simple and straightforward example.

Database security controls for confiDentiality • 165

FIGURE 7.42 Setting the salt value for Patient P02 and showing the two salt values.

Using the generated salt values with the user password, we can then hash
the salted passwords and store that result in the Patient Credentials table. In
Figure 7.43, we store the hashed salted password of Patient P01 by first con-
catenating the patient’s salt value with their plaintext password. Concatenating
essentially adds two strings together to create a third string that consists of the
first string immediately followed by the second. We then generate the SHA2
hash of the concatenated strings and store that hash value in the patient’s
password column.

FIGURE 7.43 Generating and storing a hashed salted password.

166 • Database security

We repeat that statement to store the passwords of the other users. In
Figure 7.44, we do so for Patient P02 with the same password as that for
patient P01. Even though patient P02 may likely have a different password,
we wanted to use the same to illustrate that the stored hashed salted passwords
will be different. Figure 7.44 follows by doing just that. Note that because
your patient salt values are likely different from those generated here, your
stored, hashed, salted passwords will likely be different than those shown in
Figure 7.44. Also notice that the stored hash values are different, even when
both users set the same password.

FIGURE 7.44 Generating and storing another hashed salted password, then comparing against the
first stored password.

Password-based security is a very common, practical and effective authenti-
cation mechanism. However, depending on the DBMS and other system hard-
ware, other authentication mechanisms may be available and more appropri-
ate or secure for a given environment. Many environments now use multifactor
authentication, where two or more authentication mechanisms are involved
during the authentication process of a user. As examples, a common approach is to
use password authentication along with possession of a certain device. However,
password-based authentication involves approaches like those presented here,
and one could use these approaches in all or part of an authentication scheme.

As a side note, in these examples we showed the actual hashed passwords,
salt values, and ciphertext for visual, demonstrative purposes only. In a prac-
tical implementation, we would neatly and more securely implement such
functionality in a database application or stored function, as we do with pass-
word lookup and comparison in the next section.

Database security controls for confiDentiality • 167

7.3 STORED ROUTINES

As described in the previous section, a view can provide a useful and effective
security measure limiting what data a user can access. But a view itself may
not be able to limit what a user does with that accessible data. As a result, we
often may have to consider additional security measures for a comprehensive
security implementation.

A security vulnerability of a view is that a malicious user may still be able
to derive unauthorized information with the accessible data in the view. As
an example of such a security vulnerability, consider that in our medical case
study, a user needs to calculate a percentage of fully vaccinated patients
within an age range, and the age range can vary. If we were to create a view
that allows the user to access only a patient’s date of birth and vaccination
status to calculate the percentage, that will reduce but not eliminate the risk
of compromising confidentiality or anonymity. That is because the user may
still be able to correlate a date of birth from the view with a specific patient,
and the view would also reveal that patient’s vaccination status. Thus, we
risk compromising the identity of that patient. To demonstrate this risk,
let’s create a view named AgeVaccination that accesses only a patient’s date
of birth and vaccination status. Then as the database root or administrative
user, we give user sally access to see the data of the view, as demonstrated
in Figure 7.45.

FIGURE 7.45 A view with a confidentiality vulnerability.

User sally can now access this view to determine the percentage of patients
within a certain age range that are fully vaccinated. Figure 7.46 shows one way
that sally can obtain that percentage for patients within the ages of 18 to 30 by
issuing a SELECT statement on that view.

168 • Database security

FIGURE 7.46 Accessing the limited patient data to calculate a percentage.

While the view restricts most PHI and PII for calculation purposes, a
malicious user can still access the remaining PHI and PII for a confidentiality
compromise. In particular, sally can use this view to see any or all of the data
in view, as illustrated in Figure 7.47. We show the data for the same age range
used in the previous calculation, although sally can also see similar data for
all ages.

FIGURE 7.47 Accessing all of the view data to compromise confidentiality.

Because PII is available as the date of birth, a patient’s confidentiality
of vaccination status is at risk of compromise. To maintain that confidential-
ity, we need a way to prevent user sally from misusing the data in the view.
Specifically, we need to allow sally to obtain an average without seeing the
data itself.

Even though we previously created the view FullyVaccinatedPercentage
to calculate and yield the percentage of fully vaccinated patients without
showing any of the source data, we cannot create a view for that purpose in
this scenario because the age range is not fixed and can vary. For example,
FullyVaccinatedPercentage involves all ages. While we can create a similar

Database security controls for confiDentiality • 169

restricted view that contains only ages between 18 to 30, that does not solve the
problem if we need to work with any other age range, such as 18 to 40. It may be
impractical or (nearly) impossible to create a view for each possible age range.
Consequently, we may need to consider other security mechanisms to maintain
confidentiality of the PII while still allowing any age range to be accessed for the
purposes of calculations only. A solution to this problem is to define a stored rou-
tine that specifies exactly which data is to be accessed as well as how that data is
to be used. We then allow the user to invoke or call that routine. In this manner,
the user cannot access data outside of the scope by which the routine operates,
thus maintaining security for the data we wish to keep confidential. We will look
at two forms of stored routines: stored functions and stored procedures.

Stored functions

A stored function defines a set of data accesses that returns a single value. As
such, a function can serve as a solution to this case well because we want to
obtain a single value, namely the average.

In Figure 7.48, we give the definition of a stored function that calcu-
lates the percentage of fully vaccinated persons whose age is within a given
range. As part of this definition, we first define a new temporary alternative
delimiter that marks the end of an SQL statement. This alternative delimiter
is necessary because the semi-colon ‘;’ symbol normally marks the end of an
SQL statement, and when the DBMS scans a statement and sees a semico-
lon, the DBMS processes everything scanned up to that point as a complete
statement. Because we have semicolons in the function definition, we do not
want the DBMS to read one of those semicolons and think the statement we
are expressing (the entire function definition in this case) is complete and
process that. If that were to happen, the DBMS would in effect process part
of the function definition and at the very least give an error that the statement
is incomplete. Instead, we want the DBMS to scan and process the statement
for the function definition in its entirety, so we need an alternative delimiter
that can indicate the end of the function definition.

We can specify an alternative delimiter with the DELIMITER statement.
The sequence of characters or symbols that follow will become the new state-
ment delimiter, so that the DBMS will now consider an SQL statement to be
ended with that new delimiter. Here we choose $$$ as the alternative delim-
iter, although you can choose any character sequence as long as the sequence
does not appear within the function definition, which would still cause the
DBMS to prematurely process the definition.

170 • Database security

FIGURE 7.48 Definition of a stored function that limits data access.

Next, the CREATE FUNCTION keywords start the function definition,
followed by the function name and its parameters as a list within parenthesis.
The parameter list contains the names of variables that will receive the values
provided as arguments when the function is called or invoked. Each parame-
ter is defined with a name and data type. The function will reference the value
passed to that parameter by the parameter name and recognize the value as
that data type. If more than one parameter is defined, we comma separate
each parameter definition as we do here.

We then define the data type of the value the function will return back
to the caller with the RETURN keyword, followed by that returned data type.
After that we provide the keyword DETERMINISTIC, which specifies the
function will return the same value given the same input values and same
data in the database. Because our result is based on the stored data and values
given by the caller, we expect the same result to be generated if a user calls the
function repeatedly with the same stored data and same age values. Hence
our function is deterministic. In contrast, a nondeterministic function may
generate and return a different result when given that same criteria. Usually
such behavior occurs when the function bases the returned value on other
data that can change across calls to the function, such as time.

The BEGIN keyword indicates the body of statements that execute in the
function follows. In this function, we first create a data variable to hold the cal-
culated value with the DECLARE statement, followed by the variable name
and the variable data type. We then use a form of the SELECT statement

Database security controls for confiDentiality • 171

to calculate the percentage of fully vaccinated patients whose age is within
the given age range. Unlike a typical SELECT statement that processes and
shows data, this form stores a result into a variable. Notice the INTO keyword
that follows the SELECT list. The INTO keyword is followed by a variable
name, and specifies that the result of the SELECT statement is to be stored
in that variable.

We conclude the function body with the RETURN keyword that specifies
the value or variable to return, in this case the value in the variable named
average. The END keyword indicates the end of the function body and defi-
nition. We then specify the alternative delimiter to let the DBMS know that
it can now process what we have given up to that point as a single statement.
You may notice at that point, the DBMS acknowledges the processing of the
entire function. Finally, we use the DELIMITER keyword again, this time to
set the delimiter back to its normal semicolon.

Once the stored function is defined, we also need to assign the ability for
the appropriate user (sally in this case) to execute the function, as we similarly
did so with views. The database root or administrative user would issue a form
of the GRANT statement as shown in Figure 7.49. Here we add EXECUTE
privilege for the given user or role. The FUNCTION keyword indicates that
we are assigning that privilege to a stored function name of the name that
follows.

FIGURE 7.49 Assigning execute privilege for a stored function.

To enforce security through confidentiality and anonymity of the PII in
this scenario, we also remove the ability for user sally to directly access the
AgeVaccination view, as shown in Figure 7.50. Note that even though we
have now disallowed sally to directly access the AgeVaccination view, sally
can still execute the PercentByAgeRange function, which does access the
AgeVaccination view. Because that function accesses that view and returns
information in a specific, controlled manner, sally cannot deviate beyond what
the function does, and thus cannot obtain any other data beyond what the
function returns or what sally is normally allowed to access.

172 • Database security

FIGURE 7.50 Removing direct access from the view used by the function.

Now user sally can invoke or call the function by specifying the function
name in a SELECT list, followed by the starting and ending age range in
parenthesis, as shown in Figure 7.51. Here sally invokes the function for the
age ranges of 18 to 30 and 18 to 40 to obtain the calculated percentages.

FIGURE 7.51 Invoking the stored function.

Notice that user sally can only access a calculated percentage of those
vaccinated and has no other access to the age or vaccination data. Figure 7.52
shows that sally would be denied access to any other data of that view if sally
were to directly access the view now.

FIGURE 7.52 Denied direct access of the patient data.

Database security controls for confiDentiality • 173

If we need to delete a defined function, we can issue the DROP statement
as shown in Figure 7.53 for the PercentByAgeRangeFunction. This can be
helpful if we no longer need the services of a function or need to recreate it.

FIGURE 7.53 Deleting a stored function.

Stored procedures

We can similarly define a stored procedure to define what data is to be
accessed and how that data will be accessed. The main difference between
a stored function and procedure is that a function returns a single value
with a RETURN statement to the caller via the function name. In contrast,
a procedure cannot return a value via the procedure name and hence has no
RETURN statement. However, unlike a function, a procedure can return one
or more values via the parameters.

To demonstrate how we can define a stored procedure to provide secu-
rity by specifying which data is to be accessed and how, let’s comparatively
create one to calculate the percentage of full vaccinations among a given age
range. As shown in Figure 7.54, the definition is similar to that of the stored
function with a few differences. The first difference is that we specify the
PROCEDURE (rather than FUNCTION) keyword, indicating this is a stored
procedure definition. For the second difference between the definition of a
stored function and that of a stored procedure, we specify in the parameter
list whether each parameter is only sending a data value into the procedure,
only sending a value back to the caller, or doing both. We accomplish that
by prefacing each parameter with IN, OUT, or INOUT, respectively. For the
third difference, we must add a parameter for each value that is being sent
back to the caller and not into the procedure. In this example, we have three
parameters for the stored procedure, whereas the function implementation
had two parameters. The first two parameters send into the procedure the
age beginning and end range, respectively, and the third parameter sends out
the calculated average to the caller. We preface the first two parameters with
the IN keyword and the third with the OUT keyword. As the last difference
between the function and procedure definitions, the procedure does not have
a RETURN statement.

174 • Database security

FIGURE 7.54 Defining a stored procedure to limit data access.

As with the function implementation, for user sally to have the ability to
execute this procedure, the database root or administrative user must issue a
GRANT statement like that in Figure 7.55. The only difference than before is
that we specify the PROCEDURE keyword instead of FUNCTION to indicate
we are managing privileges on a procedure.

FIGURE 7.55 Assigning execute privilege for a stored procedure.

To invoke the procedure, the user can now issue a CALL statement such
as that in Figure 7.56. In the CALL statement, we specify the procedure name
followed by a parenthetically enclosed list of comma separated arguments. The
last argument is a variable that will receive the value sent back by the proce-
dure by the OUT parameter, the last parameter defined in the procedure. The
@ symbol that appears before the variable avg indicates the name of a session
variable, which in this case holds the value sent back by the OUT parameter.
The use of a session variable allows the user that called the procedure to later
access the value in that variable, as the session variable exists for the duration of
the login session in which the variable is created. To simply show the result in
the session variable, we can issue the SELECT statement that follows.

FIGURE 7.56 Calling a stored procedure.

Database security controls for confiDentiality • 175

Revisiting the password authentication implementation

To wrap up a number of concepts in this chapter, let’s return to the password
authentication task described in Section 7.2. While we showed the steps visu-
ally for demonstrative purposes, in reality, we would want to automate those
steps and comparisons, not only for ease of use and speed, but also for secu-
rity purposes. A security risk of a compromised password arises if we allow
hashed passwords to be exposed. Namely, if an attacker were to obtain a list
of password hashes, the attacker could attempt various password attacks to
compromise those passwords.

We can mitigate that risk by using the concept of stored functions and
procedures to limit the types of access to data. Given a user id and password, a
password authentication mechanism should simply confirm whether or not the
password matches the one previously set by the user. A stored function can pro-
vide that ability to return that single yes/no or true/false value. In Figure 7.57,
we define a stored function named PasswordAuthenticated that accepts a user
id, password given for authentication, and returns the character string "true" if
the password matches the one set by the user, or "false" otherwise.

FIGURE 7.57 A stored function implementation of password authentication.

In the function parameter list, we define the first parameter named id
with a data type that matches that of a PatientId. We then the second parame-
ter named attemptedpw to receive the password provided to authenticate, set
to a maximum size of 255 characters. The function returns an up to five-char-
acter value, namely "true" or "false".

Inside the body of the function, we declare local variables storedpw and
storedsalt of exactly 64 characters each. We then retrieve the hashed pass-
word and salt values for the user id from the PatientCredentials table, and

176 • Database security

store those values in those local variables. Finally, we compare the stored
hashed salted password with the computed hash value of the salt and pass-
word provided. If they are identical, the function returns "true", otherwise the
function returns "false".

To use the PasswordAuthenticated function, a user with the appropriate
execution privilege issues a SELECT statement on the function and provides
two arguments: the patient id and the attempted or authenticating password.
Figure 7.58 shows an example of calling the function to authenticate patient
P01 with the password "P01StrongPassword", and receiving "true" for a suc-
cessful authentication.

FIGURE 7.58 Successful password authentication.

On the other hand, if the password is not a match for that user id, the
function returns "false" for an unsuccessful authentication, as shown in
Figure 7.59.

FIGURE 7.59 Unsuccessful password authentication.

Database security controls for confiDentiality • 177

7.4 SUMMARY

The database security concepts described in this chapter can supplement
and add to other security concepts that are presented in the preceding chap-
ters. By employing multiple security controls, we can achieve a layered secu-
rity implementation for a more comprehensive security solution in a given
environment.

C H A P T E R 8
transaCtIons for data IntegrIty

So far we have looked at data tasks that involved one database access or opera-
tion (such as a single SELECT, INSERT, UPDATE, or DELETE statement).
We may also have scenarios where a data task involves multiple database
accesses or operations, such as two INSERT statements, two UPDATE state-
ments, or any combination of SELECT, INSERT, UPDATE, and DELETE
statements. As an example of a single data task that involves multiple database
accesses or operations, consider a banking or other financial system that con-
tains data about account balances, like the sample data given in Figure 8.1.
We also include in Figure 8.1 the definition of the table—named Account—
that stores this data.

FIGURE 8.1 Sample data of a banking or financial scenario.

180 • Database security

In this scenario, we want to issue a financial transfer from one account
to another. We may consider the transfer itself as one data task, even though
in reality that task involves multiple database operations. At a minimum, we
have two UPDATE statements: one to reduce the first account by the transfer
amount, and another to increase the second account by the transfer amount.
In reality we may also involve other database operations for that transfer task,
such as one or more INSERT statements to track or log the transfer activ-
ity, but we will keep this first scenario simple and just consider just the two
UPDATE statements.

8.1 COMMITS, ROLLBACKS, AND AUTOMATIC COMMITS

Because the transfer task in our example involves two UPDATE statements
to be carried out, we consider the overall task to be successful only if both
UPDATE statements are successfully carried out. If we determine that both
UPDATE statements are successfully carried out, only then do we want the
overall transfer task to be considered successful and made permanent in the
database as well as visible to other user or application sessions. We consider a
session to be the period of time in which a user or application is logged into a
DBMS for their work. So in general, if we consider all of the individual opera-
tions of a given task to be successful, we can make those individual opera-
tions—and the task—permanent and visible to other sessions by issuing an
SQL COMMIT statement.

We do not want—and should not have—an outcome or result where only
some, and not all, of those database accesses are successfully carried out. As
examples of such outcomes, suppose the first UPDATE statement that reduces
an account by the transfer amount results with a negative account balance,
and business rules or data constraints do not permit negative balances. We
do not want an end result where the other operation that adds the transfer
amount completes. As another example, suppose the first UPDATE statement
that reduces the balance of one account is successful, yielding a valid, posi-
tive balance. However, the second UPDATE statement that adds the transfer
amount to the other account fails, say, because of an invalid account num-
ber or an external freeze placed on that account to prevent further activity
with that account. We similarly do not want an end result where the first
UPDATE that reduced one account has completed but the second has not. In
both cases, and any such situation where one of the operations is unsuccessful,

transactions for Data integrity • 181

we want the end result to be as if the transfer was never started in the first
place, and both accounts have the same original amounts. This means that
we may have to undo, or rollback, the database access statements that were
successful in that transfer task. We can undo those changes by issuing an SQL
ROLLBACK statement.

When we consider a set of database accesses, each as part of a larger task
such as the financial transfer, we formally refer to that task as a database
transaction. Let’s also consider that we want the transaction to either com-
plete in full or appear to not have occurred at all, that is, in the event that
one of the database accesses resulted in an error or condition that prevents
us from wanting to make the transaction results permanent and visible to
others. As such, we want the resulting effect that either all of the transac-
tion’s individual data accesses to appear to have completed or appear to not
have occurred at all. This all-or-nothing concept, where all data accesses
appear to have completed if the transaction is successful, or none of the data
accesses appear to have completed if the transaction fails, means that the
transaction is considered atomic. Such a transaction is known as an atomic
transaction.

Before we demonstrate the use of commits and rollbacks with database
transactions, let’s first discuss the concept of when changes to data are made
permanent to the database and are visible to other users or applications that
operate on that database. When we issue a database operation that changes
data (such with an INSERT, UPDATE, or DELETE statement), that change
is generally considered not visible to other database users or applications
until the change is committed to the database. Such a commit can either be
specified explicitly as an SQL statement, or be implicit or automatic where,
immediately after such a change occurs, the DBMS automatically issues
a commit. MySQL, MariaDB, and Oracle have autocommit enabled by
default, so when we issue an operation that changes the data in a database,
the DBMS automatically commits that change to the database, whether or
not that operation is part of a larger task that still has other data operations
to issue.

Because we may need to assess the outcome of a set of database oper-
ations involved in a task before we can decide whether or not to commit or
rollback the data changes issued with that task, we may need to first turn off,
or disable, autocommit mode. This allows us to later issue a commit or roll-
back to data changes once we can make that decision. We can disable—as well
as enable—autocommit mode explicitly in MySQL, MariaDB, and Oracle by

182 • Database security

changing the value of the autocommit variable. To explicitly disable automatic
commitments in this manner, we simply set the value of autocommit to 0, as
shown in Figure 8.2.

FIGURE 8.2 Disabling automatic database commitments.

Now operations that change data in a database are in general not immedi-
ately visible to other users or applications that interact with that data.1

With automatic commits disabled, the effects of certain database oper-
ations may not be immediately made permanent or visible in the database.
To make the effects of those operations permanent and visible, we can issue
a COMMIT statement. On the other hand, we may decide that we do not
want to keep those changes, say if the changes result with an invalid data
value or some other error. In that case, we may wish to undo or reverse
those data changes in order to return the database back to a state or set of
values that are valid and not in error. To carry out that undoing or reversal
of operations, we can issue a ROLLBACK statement. The resulting effect
of a ROLLBACK is that those data changes are not permanent nor visible,
as if those operations never occurred. It is important to keep in mind that,
with automatic commits disabled, a COMMIT or ROLLBACK statement
can affect only the database operations issued since the last COMMIT or
ROLLBACK statement.

Should we later need to reenable automatic commitments (or wish to
enable them if initially disabled), we can do so by changing the autocommit
variable value to 1, as shown in Figure 8.3.

Note that when automatic commits are enabled, a ROLLBACK has
no effect. More specifically, if we issue a ROLLBACK in that case, there
are not any data changes to undo because the changes have already been

1There may be certain rules or data access methods in effect that can affect when changes to data are seen by a given
user or application. In general, consider that a user or application can usually see data changes that it issues, but
other users or applications cannot until the changes are committed.

transactions for Data integrity • 183

automatically committed. Once a database operation has been committed, it
cannot be undone with a ROLLBACK. The same goes for a database opera-
tion that has been undone with a ROLLBACK—we cannot reapply it with a
COMMIT statement alone.

FIGURE 8.3 Enabling automatic database commitments.

8.2 BEGINNING A TRANSACTION WITH COMMIT OR
ROLLBACK

Now that we have an overview of database COMMIT and ROLLBACK mech-
anisms, let’s discuss the two general approaches by which we can implement
transactions. In the first approach, we must first explicitly disable automatic
commitments—if they are enabled—as we did in Figure 8.2.

Once automatic commits are disabled, we can then issue a COMMIT or
ROLLBACK statement to begin a transaction. While we often associate a
COMMIT or ROLLBACK operation with the end of a transaction, we will
consider that in this first approach, a transaction spans from one COMMIT
or ROLLBACK statement to the next COMMIT or ROLLBACK statement.
More precisely, by issuing a COMMIT or ROLLBACK statement, we either
make a set of previous changes available (with a COMMIT) or we undo those
changes to not make them available (with a ROLLBACK). Either way, we can
consider that we have a starting point by which a new transaction can begin,
and we can then issue the data operations involved in the new transaction.
After those operations, we decide whether to apply or undo those changes
(by some set of conditions) and issue a COMMIT or ROLLBACK statement,
respectively. That final COMMIT or ROLLBACK statement effectively ends
that transaction in an atomic manner. Notice that the final statement also
begins another transaction, so we can immediately issue one transaction after
another if we wish.

184 • Database security

To demonstrate this first approach to implement a transaction, let’s
refer to the banking scenario and data shown in Figure 8.1. For now, we
will presume that at a given time, only one user or application session
is accessing the database at a given time (Chapter 9 explains additional
considerations if multiple user or application sessions access the database
at the same time). Suppose we want to transfer $10000.00 from account
A00003 to account A00002. If we were to issue these operations directly,
we would have a series of statements like that shown in Figure 8.4. Here
we first explicitly disable automatic commits. We then apply an UPDATE
statement to subtract the transfer amount from the source account and a
second UPDATE statement to add the transfer amount to the destination
account. After confirming that both account balances remain in a valid,
positive, state, we then COMMIT the transaction. Finally, we reenable
automatic commits.

FIGURE 8.4 A database transaction starting with COMMIT or ROLLBACK and ending
with a COMMIT.

If we show the account balances after the COMMIT, we would see that
the transfer operations completed, as shown in Figure 8.5. Compared to
Figure 8.1, we see that 10000.00 has been transferred from account A00003
to account A00002.

transactions for Data integrity • 185

FIGURE 8.5 The result after a COMMIT.

However, certain transfers may result with a less desirable outcome. Let’s
demonstrate one such transfer that yields an account with a negative—or
invalid—balance. If we were to now transfer 15000.00 from account A00001
to account A00002, that would leave A00001 with a negative balance. To con-
firm that, we also show the resulting account balances as seen by the session
that issues the transfer, which typically sees the changes that it issued even
though other user or application sessions may not see those changes at that
time. Figure 8.6 shows that series of steps with the resulting balances.

FIGURE 8.6 A database transaction starting with COMMIT or ROLLBACK and resulting with invalid data.

186 • Database security

At this point we consider that because we have an invalid balance, we do
not want to make the changes permanent and visible, but rather want to undo
them, so we issue a ROLLBACK. If we show the account balances after the
ROLLBACK, we would see that neither of the transfer operations appear, as
shown in Figure 8.7. Compared to Figure 8.5, we see no change to the bal-
ances, as if the transfer never occurred, which is exactly what we want in this
situation: we do not want a result with an invalid set of data, but would rather
return to the previous set of data that was valid. Note that we did not have to
show the balances in Figure 8.6 before issuing the ROLLBACK—we showed
the balances to help illustrate the before and after effect of the ROLLBACK.

FIGURE 8.7 The result after a ROLLBACK.

8.3 BEGINNING A TRANSACTION WITH START
TRANSACTION

The second approach by which we can implement a transaction is
by issuing a START TRANSACTION statement to begin the transaction.
START TRANSACTION accomplishes two things. First, it implicitly—and

transactions for Data integrity • 187

temporarily—disables automatic commits, so that subsequently issued
data changes (up to the next COMMIT or ROLLBACK statement) are
not immediately seen by others. This means that we do not have to dis-
able automatic commits, if they happen to be enabled. Secondly, START
TRANSACTION also defines a point by which subsequent data operations
are included in that transaction. As such, after we have issued the oper-
ations for the transaction, we must follow with either a COMMIT state-
ment to make those changes permanent and visible in the database, or
a ROLLBACK statement to undo those changes. After that COMMIT or
ROLLBACK statement, the DBMS reenables automatic commits if that is
the default mode or last explicitly set mode. Similar to the first transaction
implementation approach, the effect is that all of the data changes involved
in a transaction are atomic.

Using the second transaction implementation approach with where we
left off in the financial scenario, let’s transfer 10000.00 from account A00002
back to account A00003. To issue that directly with the second transaction
 implementation approach, we have a series of steps like those shown in
Figure 8.8.

FIGURE 8.8 A database transaction starting with START TRANSACTION and ending with a COMMIT.

You will immediately notice that this approach has fewer steps than
the approach illustrated in Figure 8.4. This is because we do not have to
disable and reenable automatic commits. The START TRANSACTION and
COMMIT statements take care of that for us! If we were now to show
the account balances, we would see the transfer completed, as shown in
Figure 8.9.

188 • Database security

FIGURE 8.9 The result after a COMMIT.

Similarly, if we were to use START TRANSACTION to initiate a transfer
that leaves the source account with a negative balance, we would want to
conclude the transaction with a ROLLBACK. Figure 8.10 shows the series of
steps with an invalid transfer of 200000.00 from account A00006 to account
A00001.

FIGURE 8.10 A database transaction starting with START TRANSACTION and ending with a ROLLBACK.

In Figure 8.10, we did not show the account balances with the nega-
tive balance before issuing the ROLLBACK as we did in Figure 8.6.

transactions for Data integrity • 189

The showing of a negative balance is technically not necessary before we issue
the ROLLBACK, but you may do so if you wish to confirm a negative balance
before issuing the ROLLBACK (we actually use a similar approach in Section
8.4 to confirm the resulting account balance). If we were to show the account
balances after the ROLLBACK, we would see the transfer did not occur, as
illustrated in Figure 8.11.

FIGURE 8.11 The result after a ROLLBACK.

While we can effectively implement transactions with either approach,
the use of START TRANSACTION to begin a transaction is often prefera-
ble for a few reasons. First, the use of a distinct statement to begin a trans-
action helps us more clearly recognize the point where a given transaction
begins and exists. Second, START TRANSACTION can be issued to begin a
transaction whether or not automatic commitments are enabled. Hence, we
do not have to be concerned whether automatic commitments are enabled
and disable them before the transaction, as well as be concerned whether or
not to reenable automatic commitments after the transaction is finished. As
such, the remaining discussion with transactions will use a convention of using
START TRANSACTION to begin a transaction.

Tip: We can issue START TRANSACTION to begin a transaction whether or not
automatic commits are enabled.

190 • Database security

8.4 CONDITION ISSUED COMMIT OR ROLLBACK

For demonstration purposes, the previous transaction examples—
like many transaction examples found in other documentation and
resources—involved a set of database operations that concluded with an
explicit COMMIT or ROLLBACK. In other words, the logic or decision-
making involved with deciding whether to keep or undo the changes is
only explained and not actually carried out by code or SQL statements,
and we simply issue a COMMIT or ROLLBACK at the end of the trans-
action. While such examples can easily illustrate the resulting effect of a
COMMIT or ROLLBACK, they do not provide a comprehensive picture
of how we can more thoroughly implement transactions with an auto-
mated decision involved as to whether to conclude the transaction with a
COMMIT or ROLLBACK.

To provide such a more complete transaction implementation, we fol-
low up the financial scenario and demonstrate another approach that does
involve an automated decision whether to conclude the transaction with a
COMMIT or ROLLBACK. This example also stores in variables the val-
ues of information that will vary from transaction to transaction (such as
account identifiers and transfer amount), rather than using fixed values.
Thus we have an example that can generally handle any transaction and is a
more accurate representation of an actual implementation. Here, we issue
the UPDATE statements for the transfer like we did before, but instead
refer to variables for the account identifiers and transfer amount. We then
issue a SELECT statement to obtain the balance of the source account
and store that balance in the local variable srcBalance. We then deter-
mine whether srcBalance is nonnegative, and if so, we presume every-
thing is valid and issue a COMMIT to save those transfer changes and
make them visible. Otherwise, srcBalance is negative, and we presume
an invalid transfer and issue a ROLLBACK to undo the transfer changes.
Figure 8.12 shows how we may define that set of steps in a stored proce-
dure named AccountTransferIF. AccountTransferIF accepts three param-
eters, in order: source account identifier, destination account identifier,
and transfer amount. The remainder of the procedure follows the steps
that we just outlined.

transactions for Data integrity • 191

FIGURE 8.12 A database transaction implemented with conditional COMMIT or ROLLBACK.

By defining those steps in a stored procedure, we are able to use a
familiar IF-THEN-ELSE statement, as well as invoke the transaction with
a single CALL statement. Figure 8.13 demonstrates how we can invoke
AccountTransferIF to transfer 25000.00 from account A00005 to account
A00006. Afterwards, we show the account balances to observe the transfer
was successfully completed.

FIGURE 8.13 Calling a stored procedure of a database transaction implemented with conditional
COMMIT or ROLLBACK and a COMMIT result.

192 • Database security

If we were to call AccountTransferIF with transfer argument values that
would leave an account with a negative balance, the procedure would end
with a ROLLBACK to undo the operations. Figure 8.14 demonstrates an
invalid transfer of 20000 from account A00001 to account A00006, as well as
the resulting account balances, which remain unchanged from the previous
successful transfer and indicate that those transfer operations were undone.

FIGURE 8.14 Calling a stored procedure of a database transaction implemented with conditional
COMMIT or ROLLBACK and a ROLLBACK result.

8.5 EXCEPTION ISSUED ROLLBACK

As we just demonstrated, a condition issued COMMIT or ROLLBACK is one
approach by which a set of SQL statements or an application can determine
whether to conclude a transaction with a COMMIT or ROLLBACK. Still,
we may have other approaches that can more seamlessly—and thoroughly—
handle the decision whether to issue a COMMIT or ROLLBACK. One such
approach involves the use of exceptions, which are mechanisms that involve
the raising of a condition or signal to indicate that a special case occurred.
An exception can be handled automatically by some entity, such as a system,
application, or even code that we write. A number of programming languages,
such as C++, Java, and PHP allow us to write code to handle exceptions and
define the exact actions to take when an exception occurs. Let’s now see how
we can use SQL to define the actions to take when an exception occurs.

transactions for Data integrity • 193

We will refine the transaction solution presented in Section 8.4 to use an
exception—rather than a condition—in the determination of a COMMIT or
ROLLBACK. To generate an exception, we will involve the use of check con-
straints to enforce data integrity, as we described in Chapter 3. The Financial
database contains a table named AcountCC, which is identical to the original
Account table, but additionally has a built-in check constraint to confirm an
account’s balance is nonnegative. AccountCC contains the same original data
values as that of the Account table given in Figure 8.1. Figure 8.15 shows the
AccountCC table definition with data values.

FIGURE 8.15 AccountCC table definition with check constraint and data.

With that check constraint in place, when an account’s balance
becomes negative, the DBMS will automatically generate an excep-
tion. If no mechanism is in place to handle—or catch—such an excep-
tion, the DBMS will simply handle the exception by reporting it, as we
demonstrated in Chapter 3. For reference, we show in Figure 8.16 how
the DBMS may report an exception raised by this new check constraint,
should we reduce the balance of account A00001 in table AccountCC by
more than $10,000.00.

194 • Database security

FIGURE 8.16 Example of DBMS reported check constraint exception.

However, if we implement application code, a stored procedure or stored
function to catch such an exception, we can define what action(s) to take.
In our case, if an operation that is part of a transaction causes a check con-
straint-based exception, we want to undo the operations that have occurred in
that transaction. Hence, we can define that the action to take is a ROLLBACK.

By doing so, when a data integrity condition occurs and requires the
reversal of a transaction’s operations that have occurred so far, we can have a
ROLLBACK operation issued in an automated manner to undo those changes.
Figure 8.17 shows how we may implement an exception-based ROLLBACK
approach in a stored procedure named AccountTransferExc.

FIGURE 8.17 A database transaction implemented with exception-based ROLLBACK.

You will notice a few differences between this implementation and the
conditional one given in Figure 8.12. Here, we must define a handler for
the exception. In a manner similar to declaring a local variable, we declare a
handler for sqlexception, which is the type of exception generated by a check
constraint. We do not specify a name for the handler, but rather what type
or category of exception or signal the handler is to catch. We then define
between a set of BEGIN and END keywords the statements the handler is to
execute, like we would with a stored procedure or function. In this case, we
only need the exception handler to issue a ROLLBACK.2

2If using a language such as C++, Java or PHP, we could implement the exception handler in the “catch” portion of a
“try . . . catch” block. The “try” block would issue statements (including the concluding commit) in a similar manner
as our stored procedure implementation. The “catch” block would issue a rollback.

transactions for Data integrity • 195

After defining the exception handler, we have the statements for the
stored procedure itself. Similar to the one in Section 8.4 but simpler, for this
procedure, we have the two UPDATE statements involved in the transfer fol-
lowed by a COMMIT. Notice that we do not have an explicit condition or
other confirmation that the transfer operations were successful before issuing
the COMMIT. Rather, we specify in a straightforward manner what steps to
carry out, as if everything will be successful. Should something go wrong, the
check constraint and exception handler will automatically go into action and
issue the ROLLBACK.

We can invoke our refined account transfer procedure similar to how we
did so with the previous one. Figure 8.18 shows a call to AccountTransferExc
that successfully transfers 10000.00 from account A00003 to account A00001,
as well as the account balances afterwards.

FIGURE 8.18 Calling a stored procedure of a database transaction implemented with exception-based
ROLLBACK.

For comparison, let’s issue a transfer that would leave an account with a
negative balance. We will observe that the exception is “quietly” handled by
the handler, which issues the ROLLBACK, rather than allows the exception
to be simply reported to the user. Figure 8.19 shows the outcome if we were
to attempt a transfer of 50000.00 from Account A00001 to account A00002. If
we are following these demonstrations in the sequence presented, we observe
the effect that the exception handler initiated a ROLLBACK, and we still
have the same balances that we left off with in Figure 8.18.

196 • Database security

FIGURE 8.19 Calling a stored procedure of a database transaction implemented with exception-based
ROLLBACK occurring.

Such “quiet” handling of exceptions is a benefit of exception handlers, where
we want an action to be automatically carried out rather than simply report the
occurrence. However, in practice we may want to also record the occurrence
of the exception as well as carry out the action. One way we can do both is to
include in the exception handler an INSERT statement that adds a relevant row
to a table that holds logs or error-related events. That way information about the
exception is recorded so that we can refer back to it in the future. Figure 8.20
gives an example of how we may implement a revised stored procedure named
AccountTransferExcLog to log information about an exception into a table named
Logs, which has also been included with the Financial database.

FIGURE 8.20 A database transaction implemented with exception-based ROLLBACK and logging.

transactions for Data integrity • 197

If we were to repeat the previous transfer attempt of Figure 8.19, we
would now additionally have the exception occurrence recorded in the Log
table, as shown in Figure 8.21.

FIGURE 8.21 Showing the log entry added by exception-based ROLLBACK.

In addition to data integrity-based exceptions, we may also need to con-
sider other types of error-related events that may occur—such as an error
or inability to add or delete a row. Identifying a list of such errors, as well
as detecting these errors with database statements or code, can be challeng-
ing, tedious, require a significant amount of SQL statements or code, and
slow down activity with the extra processing. Fortunately many such events
typically generate an exception that can also be handled with an exception
handler like the one we just defined. And the action to take would most likely
be a ROLLBACK of the transaction operations. Consequently, the use of an
exception handler like we demonstrated to issue a ROLLBACK can catch or
handle a variety of errors that we may not completely anticipate, and all with
the same handler, so we may not have to implement additional coding or
other processing. Furthermore, other types of exceptions (such as sqlwarning)
may be generated by certain events. As we did for sqlexception, we can simi-
larly define handlers for those types of exceptions if necessary.

8.6 A LARGER DEMONSTRATION OF TRANSACTIONS

As another, more comprehensive demonstration of transactions to uphold
data integrity, let’s consider an e-commerce scenario, where customers pur-
chase items online.3

3There are various implementations to the functionality, browsing, selecting, and purchasing activities in an e-com-
merce system. This demonstration considers one of those implementations.

198 • Database security

In a common e-commerce scenario, a user browses items whose data—
such as description, cost, and number of that item available—is stored in a
database. The user selects (or places in a “cart”) the items they wish to pur-
chase. Information about the user selections or cart contents may be stored
either on the user’s system or in the database itself. Either way, when the user
continues with the purchase of those items, a number of database accesses
will occur. At the very least, we must store information in the database about
the order itself and items involved, as well as reduce the numbers of those
items in stock or available for other purchases. We will consider those data-
base accesses involved with the purchasing task as a database transaction.

If all of those database accesses are considered successful, we will have
all the necessary information for the order created and item counts reduced
accordingly. However, we must consider that one of those individual database
accesses in the purchasing transaction may yield an error or invalid outcome.
For example, suppose the number available of a particular item is smaller
than the number requested in the order. If we were to reduce the number
available by the ordered number, we would then have a negative number
available, which may be considered invalid and/or a data constraint violation.
An e-commerce application may handle such an outcome in a variety of ways.
Perhaps the application may proceed with the purchase and include in the
order only those items in which there are enough available. Alternatively, the
application may interrupt the purchase altogether, allow the user to make
corrections or adjustments to items and their number ordered, and retry the
purchase. For our transaction scenario, we will consider the latter implemen-
tation, where the application wants to cancel that transaction, allow the user
to make adjustments, and retry the purchase.

A business scenario that may fit this particular e-commerce behavior is
one for a restaurant’s online ordering system. A customer who, say, places
an order for a dinner or event may need to make corrections immediately
if an item is not available in the number desired. Let’s consider a restau-
rant for which we are to implement online ordering of their products for
customer pickup. The table definitions for the database to support this
need are given in Figure 8.22 and the table data in Figure 8.23. Here, we
have one table named Item that stores information about the items a cus-
tomer may add to their order, and another table named CustomerOrder
that stores information about all customer orders. Because we have a
many-to-many relationship between the Item and CustomerOrder tables,

transactions for Data integrity • 199

the implementation also involves an intersection table named OrderItem
that stores information about a particular order’s items. The presence of
a CustomerID field in the CustOrder table implies that we also have a
Customer table, but for brevity we do not show that table, as it is not
involved in this transaction example. Also, to keep this example more
focused on the transaction process, we will assume the items that a user
selects are stored on the user’s system or device while the user browses and
makes their order selections. When the user completes the purchase and
places the order, the order information is then added to the database and
the item counts are reduced accordingly.

FIGURE 8.22 Table definitions for an e-commerce restaurant scenario.

200 • Database security

FIGURE 8.23 Table data for an e-commerce restaurant scenario.

Suppose that the customer with CustId C001 now selects items and
places an order. The customer selects 6 lbs. of smoked brisket (item I005), 6
packages of rolls (item I015), and 15 garden salads (item I011) for pickup at
18:30. The customer then places the order. In our scenario the created order
information involves adding one row to the CustomerOrder table and adding
one or more rows to the OrderItem table. The row added to CustomerOrder
contains an identifier for the order (OrderID), identifier for the customer
(CustomerID), and time in which the order will be picked up (PickupTime).
The data added to OrderItem involves one row for each item ordered, which
includes the identifier of the order (OrderID), identifier of a particular item
(ItemID), and number of that item in the order (Quantity). Furthermore, in
the Item table we also reduce the Available count of those ordered items, so
that we maintain a current count of the number available for other orders.

With all these operations involved in an order transaction, we need to
consider that one or more of them may not be successful or generate a result
that is considered invalid. In that situation, we want to undo all of the oper-
ations involved with that order to appear as if the order had not yet been
placed, then allow the customer to make changes to the items and attempt to
place the order again. For example, the adding of a row to CustomerOrder
or OrderItem may be unsuccessful because of a resource limit or referential

transactions for Data integrity • 201

integrity constraint violation with a foreign key. That may be a very unlikely
error, but such an error may occur. More likely, we might encounter an
error related to a business rule or data check constraint, such as when an
item’s Available value becomes negative if the transaction reduces an item’s
Available count to a negative value. Notice that the Item table in Figure 8.22
has a check constraint to confirm that the Available value is nonnegative.

Even though we do not involve the payment process in this example, with
a more complete transaction, we may also involve the payment process as
one of the transaction operations. Even though the payment process may not
directly involve our database, we may wish to include the payment within the
transaction so that the outcome of the payment process can affect the con-
cluding ROLLBACK or COMMIT.4

If we were to carry out the processing of customer C001’s order within a
transaction, we would issue a series of SQL steps like those within the stored
procedure PlaceOrder shown in Figure 8.24. For the purpose of this demon-
stration and to clearly see the data changes are involved, we show hardcoded
SQL INSERT and UPDATE statements for the items in the transaction with
explicit values based on the order details, and we define the stored procedure
with no arguments. In an actual setting, we would use SQL statements or
other language code that references the order’s CustomerID, OrderID, and
list of items as arguments or variables. The INSERT and UPDATE statements
would then refer to those values. Let’s presume the OrderID that is associ-
ated with this order is O004. After issuing the SQL statements, the procedure
concludes with a COMMIT and sets an outgoing result session variable value
to 0. The outgoing result provides the caller with a way to know whether or
not the transaction ended with a COMMIT or ROLLBACK. As with many
programming languages, we use a result of 0 to indicate the transaction was
successful and a COMMIT was issued. To handle cases where the transaction
is unsuccessful, we have an exception handler issue a ROLLBACK. The han-
dler also sets the outgoing result to –1 to let the caller know that the transac-
tion failed.

4An e-commerce application may involve the payment mechanism as part of the transaction involved with placing
the order as described. For example, using an exception-based rollback, the transaction may add the order infor-
mation and reduce the item counts. If no exception has been generated thus far to rollback the transaction, the
transaction may then process the payment. If payment is successful, the transaction may simply conclude and issue
a commit. If payment is unsuccessful, the payment mechanism or transaction may generate an exception, and the
exception handler would issue a rollback of the order operations.

202 • Database security

FIGURE 8.24 Transaction and SQL statements involved with customer C001’s order.

Starting with the data shown in Figure 8.23, when customer C001’s places
their order, we would in practice call PlaceOrder with the necessary incoming
argument values that pertain to the order, as well as an argument to receive
the outgoing result value. However, because we show PlaceOrder with hard-
coded values of the order for demonstrative purposes, we call PlaceOrder
with only the argument that receives the outgoing result, as illustrated in
Figure 8.25. We then show the returned result value of 0, which tells us that
the transaction was successful and committed. Afterwards, we drop the stored
procedure because of the hardcoded values for that order so that we can
demonstrate another order that follows.

FIGURE 8.25 Placing C001’s order and viewing the returned transaction result.

transactions for Data integrity • 203

Presuming all the transaction operations are successful, we have the
resulting data after the COMMIT of that transaction shown in Figure 8.26.
For a complete snapshot of the data, we illustrate the data in a figure of tables
rather than query each table, although if you were to query each table you
would see the same data.5

FIGURE 8.26 E-commerce database after customer C001 successfully places an order.

Now suppose customer C012 wishes to place an order of 2 smoked chick-
ens (item I001), 3 lbs. of smoked brisket (item I005), and 10 baked potatoes
(item I009) for pickup at 18:45. Let’s presume the OrderID that is associated
with this order is O005. Figure 8.27 shows the series of SQL statements in a
hardcoded form that will be issued for that transaction.

5Depending on the e-commerce checkout implementation, the process of issuing and confirming payment may
also be within the transaction that prepares the order and reduces item counts as part of the checkout process. Our
example considers the ordering system processes the payment first, and if successful, only then proceeds with the
transaction to prepare the order and reduce item counts.

204 • Database security

FIGURE 8.27 Transaction and SQL statements involved with customer C012’s order.

Simulating the call to PlaceOrder in a similar manner as we did for the
previous order, we have the series of statements as shown in Figure 8.28.
We notice this time we have a returned result value of –1, which tells us the
order’s transaction failed and was rolled back.

FIGURE 8.28 Placing C012’s order and viewing the returned transaction result.

transactions for Data integrity • 205

To review why the transaction failed and the action taken, let’s review the
transaction statements given in Figure 8.27. The INSERT statements and first
UPDATE statement as given in this transaction add rows to CustomerOrder
and OrderItem and update the Available value for item I001. However, when
updating item I005’s Available value, we have a negative result. Figure 8.29
shows how those tables and data appear to the transaction up to this point. We
show the data that has been added and modified in the transaction so far with
a gray background to indicate that those changes have not yet been finalized
with a commit or rollback. Presuming the check constraint for the second
item generated an exception, we never reach the point where the Available
value for the third item is reduced. Consequently, Figure 8.29 does not show
a reduced Available value for item I009.

FIGURE 8.29 E-commerce database with customer C012’s order being processed. Data values in gray
represent the changes within the transaction.

206 • Database security

The exception handler is then invoked because of the negative Available
value and issues a rollback. That rollback effectively undoes all of those
changes in gray as shown in Figure 8.30, which is identical to the data in
Figure 8.26 immediately before the transaction started.

FIGURE 8.30 E-commerce database after a rollback of customer C012’s order.

8.7 SUMMARY

In this chapter, we considered more complex database operations that involve
multiple accesses. Now that we have familiarity with the purpose of transac-
tions and how we may use them, we explore in the next chapter some other
data integrity controls that we can employ in larger or more comprehensive
environments.

C H A P T E R 9
data IntegrIty wIth ConCurrent
aCCess

Chapter 8 focused on maintaining data integrity when we have multiple
accesses per task. Chapter 9 focuses on another data integrity concern, this
time with multiple sessions accessing the DBMS and its data. So far, we
have considered rather simple data access scenarios where only one user or
application session accesses the database at a given time, such that the opera-
tions by one session completes before those of another session begin. Such
accesses are referred to as serial accesses, or those that occur one after the
other. However, in larger and/or busier environments, it may be common that,
at any given time, multiple user or application sessions may need to access the
database and issue tasks at the same time. Such concurrent access introduces
a risk of data integrity problems that compromise the information security
objective of integrity. The following describes various data integrity problems
and solutions that we can employ to solve those problems. We begin with a
follow-up to the Chapter 3 topic of backups, and then expand upon the sce-
narios with data access from recent chapters.

9.1 CONCURRENT ACCESS AND BACKUPS

In Chapter 3, “Database Management and Administration,” we described
a variety of backup solutions for availability involving all databases, certain
databases, or certain tables. However, we assumed a single-session DBMS

208 • Database security

environment, where at any given time, at most one user or application has
a session connection to the DBMS. In larger or busier environments, such
an assumption may not be practical, and at any given time we may actually
have multiple users and/or applications with active sessions to the DBMS.
It is the presence of these multiple active sessions that introduces the
potential for data integrity problems. Such data integrity problems occur
when multiple user or application sessions exist at a given time, and at
least one of those concurrent sessions issue changes to DBMS components
(databases, tables, stored procedures, stored functions, and so on) and/or
data itself.

In the context of backups, in order to maintain data integrity, a backup
that we create should have a consistent snapshot of the backed up contents.
We do not want, say, part of the backup to contain database content before a
session issues a change to the DBMS components or data, and another part
of the backup to contain other DBMS content that does include those issued
changes. Such an inconsistency compromises the data integrity objective with
information security.

As a specific example of a data integrity compromise of DBMS compo-
nents with backups, consider a session that issues data definition language
(DDL) SQL statements to add a table and corresponding referential integrity
constraints while a backup is in progress. This action introduces a risk of an
inconsistent backup, where part of the backup may not include necessary ref-
erences to the added table, but other parts of the backup do.

As another specific example of a data integrity compromise in a backup,
let’s look at one with the actual data itself. Consider data manipulation lan-
guage (DML) statements that a session can issue to change table data. Suppose
we initiate a backup that involves two tables and their data. The first table
contains an inventory of items that includes the count of each item in stock.
The second table contains order information, which includes with each order
a list of items as well as the number of that item in that order. To maintain an
item’s current stock count in the first table, when an order is placed, for each
item in the order, the DBMS reduces the item’s stock count by the number
specified in the placed order. The DBMS also inserts order details into the
second table, which includes the number of each item specified in the order.
If one were to place an order while a backup is concurrently in progress, we
introduce the risk of an inconsistent backup, where the backup may possibly
contain data in the first table with inventory and stock count before the order
is placed, but also contain data in the second table after the order is placed.

Data integrity with concurrent access • 209

Consequently, the backup would then portray an inconsistent snapshot where
we have the item’s stock count before the order, as well as order details which
implies some of those items have been sold. Hence, the inventory stock num-
ber is larger than it should be.

In both examples, we have risks of data integrity in our backups, namely
disparities or inconsistencies with DBMS components or data in the backup.
Such data integrity problems can occur if operations are allowed to change
DBMS components or data while a backup is in progress. To solve such data
integrity problems associated with backups, we want to ensure a consistent
snapshot of the database components and data during the backup task. In
other words, we want to temporarily “freeze” the database components and
data itself from any changes while the backup takes place. We can accom-
plish such a freeze by locking the necessary DBMS components and data.
A lock is a synchronization mechanism that coordinates access to shared
resources or data and can be used as a solution for a variety of data integrity
problems.

We can use a lock at a variety of levels in a DBMS, depending on the
scope of the resource(s) or data of which we want to coordinate access. To
carry out a complete backup of all DBMS components and data, we will first
consider a lock that effectively freezes all of the DBMS components and data.
That way the backup task can create a copy of a single, consistent snapshot of
any or all databases without introducing a data integrity risk caused by poten-
tial changes during the backup. With such a lock in place, if a session attempts
to carry out a DDL or DML statement that adds, removes, or modifies a
DBMS component or any data, the DBMS will make that session wait until
the backup is complete and the lock is removed. Then the DBMS will allow
that DDL or DML statement to be safely carried out so as to not risk data
integrity of the generated backup.

To issue such a lock on all databases with MySQL, Oracle, or MariaDB,
we can issue the FLUSH TABLES statement, as shown in Figure 9.1. Despite
the mention of tables, this statement effectively freezes all database compo-
nents and data so that we can achieve a consistent snapshot and resulting
backup. This statement also ensures that all table data is first written to disk
so that all latest changes are included in the backup. When that statement
returns to the session, all table data has been written and we have a read lock
in effect on all databases. For now, simply consider this read lock allows read-
only access to the DBMS and data but disallows any efforts to add, remove, or
modify DBMS components or data.

210 • Database security

FIGURE 9.1 Locking the DBMS and data for a backup.

We can then create a backup of the locked DBMS content in one of two
approaches. In the first approach, with another session to the DBMS, we can
then safely issue a backup statement such as with mysqldump as we did in
Chapter 3. Notice that we mention “with another session,” because if we close
the session that issued the FLUSH TABLES lock, the DBMS will release that
lock.

The second approach issues the backup within the session that estab-
lished the lock. This approach leaves the session open and hence retains the
lock. In Figure 9.2, within the session that established the lock on the DBMS,
we issue a system statement to issue the mysqldump command. That will
create a backup of the entire DBMS and data into the backup file my_con-
sistent_backup.sql, without closing the session and releasing the lock. While
the backup is in progress—namely while the lock is in effect—if any other
session were to issue a DDL or DML statement to add, remove, or change a
DBMS component or data, that session would wait. Later in this chapter, we
discuss the use of locks in more detail and will demonstrate the effects of such
waits, as well as the effects of read locks and write locks. For now, we will just
consider the presence of this read lock allows the backup to proceed without a
data integrity risk by causing concurrent DML or DDL modifying statements
to wait for now.

FIGURE 9.2 Issuing a backup of the locked DBMS and data and releasing that lock.

After the backup is complete, that session (the one that issued the FLUSH
TABLES statement) can remove that lock with the UNLOCK TABLES state-
ment, as shown at the end of Figure 9.2. After the UNLOCK TABLES state-
ment returns, all sessions regain the ability to access and make changes to the
DBMS components and data (provided they had that ability to do so before

Data integrity with concurrent access • 211

the lock was issued), and the DBMS will allow any waiting DDL or DML
statements to proceed.

If we wish to backup only certain tables of a DBMS, we do not have to
issue a lock on the entire DBMS as we did in Figure 9.1, but can rather lock
only the tables that will be included in the backup. While we could lock the
entire DBMS to maintain data integrity to a backup of only certain tables,
notice that we would also disallow all but read-only access to other parts of the
DBMS and data that we do not need to protect for that backup.

When issuing a backup to only certain tables, it is better to lock only those
tables to freeze only the content needed in the backup. Figure 9.3 gives the
general syntax for the FLUSH TABLES statement. If we do not specify any
database(s) and/or table(s), FLUSH TABLES locks the entire DBMS includ-
ing all data. To lock a specific table, we use a statement similar to that in
Figure 9.1 for the entire DBMS, but also immediately follow the TABLES
keyword with the table name, optionally prefixed with its database name and
a period. If we specify only a table name, the statement refers to that table
in the currently selected database to use. The ellipsis within square brackets
indicate that to lock multiple tables, we specify the names of those tables in a
comma-separated list, with each table optionally prefixed with their database
name and a period.

FLUSH TABLES [database.]table [, ...] WITH READ LOCK

FIGURE 9.3 General syntax of the FLUSH TABLES statement to obtain a read lock.

As an example of locking a specific table for backup, suppose we wish to
backup only the Patient table and its data in the MedicalCaseStudy database
from Chapter 7. Figure 9.4 shows how we can issue a read lock to freeze only
that table, and we also prefix the database name just in case that database is
not currently selected to be used.

FIGURE 9.4 Locking a table and its data for backup.

After locking the table, we can safely issue a backup statement and unlock
that table like that in Figure 9.5. The same UNLOCK TABLES statement will

212 • Database security

unlock all tables specified with the previous lock, whether we locked a single
table or multiple tables.

FIGURE 9.5 Backup of a specific table and unlocking the table and its data.

A DBMS may have other statements to lock or freeze certain parts of
the DBMS for backup, but we focused on the FLUSH TABLES statement
because it seems more universal.

9.2 CONCURRENT ACCESS WITH DML STATEMENTS

In the previous chapters, we issued SQL statements to retrieve, add, remove,
or modify data in the context of a single active session (that issues one state-
ment after the other, or serially), or multiple sessions (where each session
issues its own statements serially and statements are serial across sessions
such that no two sessions concurrently have a statement in progress). By doing
so, we ensure that only one such task is carried out on the DBMS at a given
time, and therefore preserve data integrity.

However, in a larger and/or busier environment, such strict serial behav-
ior may not be practical or desirable. Consider a larger and/or busier environ-
ment where, at a given time, we may potentially have multiple sessions that
each wish to issue a task. If we require each of these tasks to be issued serially
in those environments, the turnaround time, or elapsed time from submission
of a task until that task completes, of those accesses may significantly increase
as the number of tasks increases. For example, if 100 sessions each need to
issue a task at the same time but are required to issue the tasks serially among
each other, the tasks will be processed as if waiting in a line. The first task will
be handled while the other 99 wait their turn. After that first task completes,
the second task is handled while the other 98 wait. This continues until the
last task is finally handled, after waiting for the other 99 tasks to complete
first, one after the other. As such, the performance of serial access turnaround
time does not scale well as the number of tasks increases.

Data integrity with concurrent access • 213

To better scale the turnaround time in such larger and/or busier environ-
ments, we can alternatively allow simultaneous or concurrent access for those
multiple users or application sessions, so that rather than wait its turn, a task
can go ahead and issue its database operations while another task also does
so. This concurrent approach can better utilize the database and significantly
reduce task turnaround time by not imposing that requirement for tasks to
wait in line. Unfortunately, such concurrency can also introduce a data integ-
rity problem related to data consistency.

We described in Chapter 2, “Database Design,” how a form of data integ-
rity problems with data consistency can arise because of duplicated data and
showed how we can solve that problem with database normalization. We will
now describe other data integrity problems with data consistency that may
occur when multiple user or application sessions concurrently access the same
data. To illustrate this problem, consider the Financial scenario and account
transfers in Chapter 8. We could involve any of the account transfer approaches
from that discussion, but let’s refer to the most recent implementation that
we showed in Figure 8.20 for the stored procedure AccountTransferExcLog,
which employs a check constraint, exception, and logging. Recall that imple-
mentation uses the AccountCC table, which we will presume still has the data
as shown in Figure 8.15. If your data in that table is different, you may wish to
restore that table from the backup file Financial_AccountCC.sql.

AccountTransferExcLog seems rather comprehensive to cover security
concerns if only one user or application session can issue this stored proce-
dure at any given time. However, a data integrity issue arises when multiple
sessions concurrently access this stored procedure. Even though we refer to
this stored procedure, rather than call it, in the following examples we take a
closer look at the individual operations within that procedure.

Let’s examine the data integrity concern by comparing two serial trans-
fer cases and two concurrent transfer cases. The first serial case involves two
transfers, one that sends an amount from account A00001 to account A00002,
and another transfer that sends an amount from account A00003 to account
A00004. When issued serially, we do not have a potential for data inconsis-
tency among the account balances because each transfer involves different
accounts. Therefore, one transfer cannot interfere with the other.

Let’s now consider the second serial case that also involves two transfers,
TransferA that sends an amount from account A00001 to A00002, and another
transfer, TransferB, that sends an amount from account A00001 to A00003.
When issued serially, TransferA will complete before TransferB begins, or

214 • Database security

vice versa. Figure 9.6 shows the sequence of data accesses to account A00001
if TransferA occurs first. These data accesses refer to the first UPDATE state-
ment, which first reads the source account balance, subtracts the transfer
amount from that read balance, and then writes the resulting balance back
to the database. For brevity and to focus on the data integrity threat with
account A00001, the account accessed by both transfers, Figure 9.6 does not
include the accesses to accounts A00002 or A00003. Those accounts are not
accessed by both transfers, so the accesses to read, add to, and then write
their balances as the second part of each transfer occur without data integrity
concerns.

FIGURE 9.6 Steps involved in serial transfers between A00001 to A00002 and A00001 to A00003.

In this second serial case, both transfers involve account A00001 as the
transfer source. If we issue the transfers in the second case serially, or one
after the other, we still do not have a data integrity concern. For example, if
account A00001 starts with a balance of 10000.00, and we transfer 2000.00
to account A00002, that leaves A00001 with 10000.00-2000.00 or 8000.00.
Then after the first transfer completes, if we follow with the second trans-
fer of 1500.00 from account A00001 to A00003, that leaves account A00001
with 8000.00-1500.00 or 6500.00, which is what we would expect. We even
have the same resulting balance if TransferB were to occur serially before
TransferA. Neither serial case presents a data integrity concern, and each
account ends up with the proper balance expected.

On the other hand, suppose that we had allowed concurrent access to
this stored procedure so that we can better scale as the number of transfers
increases. Looking at the first case with concurrent access, again TransferA

Data integrity with concurrent access • 215

sends an amount from account A00001 to account A00002, and TransferB sends
an amount from account A00003 to account A00004. As with serial access, we
still do not have a potential for data inconsistency in this first case among the
account balances, because each transfer accesses different accounts.

However, in the second concurrent case, we do have potential for a data
integrity concern, because both transfers access a given account, namely
A00001. Figure 9.7 illustrates one of the possible sequences of steps involved
with these concurrent transfers. As with Figure 9.6, we focus on the steps
involved with the account that is accessed by both transfers, the source
account A00001.

FIGURE 9.7 Possible sequence of steps involved with concurrent transfers between
 A00001 to A00002 and A00001 to A00003.

Again presuming account A00001 initially has a balance of 15000.00,
account A00002 has 5000.00, and account A00003 has 120000.00, suppose
both transfers are issued concurrently. Each transfer carries out the first
UPDATE statement. However, an UPDATE statement actually consists of
three data steps: a read of the data value, a modification to the read value, and
a write of the resulting value back to the database. Suppose the first transfer
carries out the read and modification steps, but before it issues the third step,
the write, a second transfer begins to carry out its UPDATE statement steps.
The second transfer carries out a read in the database for the data whose
modified value has not yet been written back by the first transfer. So the first
transfer reads a balance of 10000.00 and subtracts 2000.00 yielding 8000.00,
while the second transfer reads a balance of 10000.00 (which is still the value
in the database) and subtracts 1500.00 yielding 8500.00. Then each transfer
proceeds to write their corresponding result back to the database.

216 • Database security

Figure 9.8 shows a case where the first transfer carries out its write before
the second transfer. So the first transfer writes back 8000.00 as the new
 balance, and then the second transfer then writes back 8500.00 as the new
balance. That leaves the balance of account A00001 at 8500.00 after both
transfers have accessed the source account, which is certainly not the outcome
we want or would expect! A similar result occurs if the second transfer were to
write its result of 8500.00 first, followed by the first transfer writing its result
of 8000.00. The overall result is that the balance of A00001 is 8000.00, which
is also not what we want nor expect! In both situations, one of the updates—or
writes by one of the transfers—is lost in the end. This data integrity concern is
an example of a lost update problem, and can occur when we have concurrent
access to the same or shared data, and two or more accesses read and update
that data without proper coordination.

A common solution to a lost update and similar data integrity problems
for shared data involves coordinating access to the shared data with mutual
exclusion. Mutual exclusion is a property by which only one user or applica-
tion session may access shared data at a given time. A common mutual exclu-
sion technique involves a synchronization mechanism called a lock, and is
what we will use to solve our data integrity problem. We associate a lock with
a piece or set of shared data that requires synchronized or coordinated access
to prevent such data integrity problems. The lock protects the integrity of the
data by requiring a session to first hold the lock associated with that data. At
any given time, at most one session can hold or possess that lock. The process
for a session to obtain and hold a lock begins with the session requesting the
lock. If that lock is available (that is, not currently held by another session),
the DBMS gives the requesting session that lock to hold. The session can
then access the shared data associated with that lock. When a session finishes
their access to the shared data, the session releases or lets go of the lock. The
DBMS can then give the lock to another session that requests the lock.

On the other hand, if a session requests a lock that is currently held by
another session, the requesting session must wait for the lock to be released so
that the lock becomes available. Once the lock becomes available, the acquir-
ing session finally has a chance to hold the lock and access the shared data.

By following those steps to request, hold, and release locks associated
with shared data, we are assured that only one user or application session can
access that shared data at a given time. As such the mutual exclusion property
of a lock prevents two or more concurrent accesses to shared data, and there-
fore prevents lost update or data integrity problems.

Data integrity with concurrent access • 217

In most DBMSs, we can employ a lock at various levels. Many DBMS
allow us to lock the entire DBMS, which includes all of its tables, data, and
other components. We demonstrated the use of DBMS locking in Chapter 3,
“Database Management and Administration,” in the discussion of backups.
Many DBMSs allow a lock to be associated with the entire DBMS itself, an
entire database table, or an individual row. Some DBMSs even provide the
ability to lock a particular column. To solve our concurrent transfer problem,
we can choose to either employ a lock at the table-level or row-level. We will
look at both approaches, as each has its advantages and disadvantages.

Table-level locking

The first locking approach we will discuss is perhaps the simplest: a lock at
the table-level, or on an entire table. If a given transfer holds a lock on the
AccountCC table, that transfer can safely access the AccountCC table and
issue their data accesses to the AccountCC table without risking data integ-
rity concerns, because no other transfer can access that table in a way that
changes the table data while the first transfer holds that lock. After the first
transfer completes its operations, the transfer can then release the lock to
allow another transfer task to have its turn with that table lock and issue their
accesses to that table.

Figure 9.8 shows the general syntax for a user or application session to
lock and unlock at the table-level with SQL. We begin with a LOCK TABLE
statement and provide the name of the table to lock, followed by a lock type of
WRITE or READ. A lock type of WRITE indicates that the session will write
data to the locked tables, and the lock thus provides mutual exclusive access.
A lock type of READ specifies that the session will only read the data of the
locked data tables and not modify data in those tables. If a session will both
read and write a locked table in its operations, we should specify a WRITE
lock type. We will later demonstrate the use of both lock types to distinguish
them and further describe their differences.

We can also lock multiple tables in a single LOCK TABLES statement by
providing a comma-separated list of table names and their lock type. Regardless
of locking one or multiple tables, if the specified table(s) are not locked when
a session issues a LOCK TABLES statement, the statement returns, and the
session is considered to now hold the lock(s) for those table(s). The session
can then proceed to safely issue statements that access those locked tables.
When finished accessing the tables, the session must issue an UNLOCK

218 • Database security

TABLES statement, which unlocks all of the tables that were listed in the
corresponding (most recent) LOCK TABLES statement. Finally, notice that
tables accessed between the LOCK TABLES and UNLOCK TABLES state-
ments must be listed in the LOCK TABLES statement, or the DBMS will
report an error.1

LOCK TABLES table_name lock_type [, table_name lock_type [...]];

statement(s)_to_access_locked_table(s)

UNLOCK TABLES;

FIGURE 9.8 General syntax to lock and unlock a table.

To get a better idea of this concurrent transfer example and solution,
you may follow with two concurrent sql connections to the database with the
AccountCC table. One connection issues the statements for TransferA, and
the other connection issues the statements for TransferB. It does not matter
whether both session connections are established by the same database user
or by different users. To distinguish the activity of each session, the first ses-
sion has a prompt of “mysql session 1>” and the second session has a prompt
of “mysql session 2>”.

To solve our concurrent transfer problem with table-level locking, each
transfer will involve a series of statements like those shown in Figure 9.9. Here
we represent the locking of the AccountCC table by TransferA for writing.

FIGURE 9.9 Table-level locking by first first session of the AccountCC table for a potentially concur-
rent transfer between A00001 to A00002.

1We can lock and unlock a view in the same manner as a table, by providing the name of a view rather than the name
of a table. The concept is like that for a table, namely, the lock holder is able to access the data in the view according
to the view lock type.

Data integrity with concurrent access • 219

Notice the caption for Figure 9.9 mentions a “potentially concurrent
transfer,” because we do not know necessarily at the time the transfer is
issued whether that transfer will actually be concurrent with another transfer.
If there is another concurrent transfer, the other transfer must also lock the
AccountCC table before similarly reading, modifying, and writing its balances
involved. Locking by both transfers is necessary to maintain the data integrity
we need to prevent data inconsistencies—such as lost updates—among those
transfers. However, if a transfer is not concurrent with another transfer, the
locking of the table just happens to be a precautionary extra step and has
no effect on the resulting account balances. Thus, we take the approach of
“better safe than sorry” and always lock the table to ensure we maintain data
integrity and consistency.

Looking at TransferB, its statements are given in Figure 9.10. Because
both TransferA and TransferB lock the AccountCC table before accessing
the account data, both transfers coordinate their access to that table without
risking data integrity because of inconsistencies.

FIGURE 9.10 Table-level locking by the second session of the AccountCC table for a potentially
 concurrent transfer between A00001 to A00003.

If we were to issue all of the statements in Figure 9.9 followed by the
statements in Figure 9.10, or vice versa, we would achieve the expected
outcome of both transfers successfully completing and with no data integ-
rity problems—although such accesses are examples of serial access, and
as described previously, we do not have data integrity problems with serial
access, even without locking. But let’s look more closely at the data integrity
problems that can arise when the transfers are truly concurrent and how locks
can provide the necessary mutual exclusion to prevent data integrity prob-
lems. To demonstrate this idea, we will repeat the previous transfer example.

220 • Database security

However, for comparison we will return to that same set of data values before
the transfers, and first reverse the actions of TransferA and TransferB, as
shown in Figure 9.11.

FIGURE 9.11 Reversing the actions of TransferA and TransferB to repeat those transfers.

We will now demonstrate the possible effects of two concurrent login
sessions, where the first session issues the steps for TransferA and the second
session issues the steps for TransferB. We can simulate concurrent access by
first issuing only some of the steps for one transfer. In Figure 9.12, we have
the first session issuing the LOCK TABLES statement, which immediately
returns because there was no lock on the AccountCC table held by any ses-
sion. The first session now holds the lock for the AccountCC table, and can
safely access the AccountCC table as they need. However, let’s not issue all
of those statements for TransferA at this time, so that we can show what hap-
pens if another session concurrently issues TransferB. As such, for now we
will carry out only the first few statements of TransferA for the removal of the
transfer amount from account A00001.

FIGURE 9.12 The first session obtaining the AccountCC table lock for TransferA and starting its
operations.

To simulate a concurrent issuing of TransferB, Figure 9.13 illustrates the
issuing of the LOCK TABLE statement for the second session. You will notice
that the statement does not return at this time, and this indicates that the

Data integrity with concurrent access • 221

second session is waiting for the lock that is currently held by the first session.
As such, the second session cannot proceed with their statements to access
the table data until the first session is finished with its access.2

FIGURE 9.13 The second session requesting the AccountCC table lock and waiting on that lock.

Figure 9.14 shows the first session proceeding with their access to the
table and releasing that lock. You will notice that releasing a lock will always
return and does not require coordination with other sessions to do so.

FIGURE 9.14 The first session continues to access the AccountCC table and releases the table lock.

It is not until the first session issues the UNLOCK TABLE statement that
the second session has a chance to hold that lock and proceed. Figure 9.15 shows
the unlocking of the table by the first session now makes that lock available for
the second session. The second session’s lock request returns, which means the
second session now holds the table lock and can safely access that table.

FIGURE 9.15 The second session given the AccountCC table lock and can now access the table.

2A DBMS may allow a session to only wait for a period of time (such as 60 seconds) for a lock to become available
before “timing out”. If such a timeout occurs, the DBMS will cancel the waiting session’s lock request and trans-
action and allow the session to continue issuing statements to the DBMS. Notice that the session must retry the
transaction and lock request if it wishes to reattempt that task.

222 • Database security

We consider this form of table-level locking the simplest implementation
of locks in a database because it involves only one lock per table accessed. As
such, an advantage of table-level locking is that one or a small number of locks
may be required to maintain data integrity in a given scenario. However, while
such mutual exclusion does solve the data integrity problem with concurrent
access, a disadvantage is that table-level locking can significantly degrade run-
time performance. Specifically to the account transfer scenario, table-level
locking can negatively impact the number of transfers that can be issued
within a given timeframe. For example, in our first case with TransferA for
accounts A00001 to A00002 and TransferB to A00003 to A00004, we do not
have the potential for data integrity concerns, but each transfer still locks the
entire table for mutual exclusive access anyway, because we may not necessar-
ily know beforehand whether both transfers will access the same account. If
TransferA were to lock the table first, TransferB then has to wait its turn, even
though its accesses would not interfere with those of TransferA (or vice versa).
Hence, table-level locking with a WRITE lock type on the AccountCC table
always causes the accesses of each transfer to be serial, and this eliminates the
performance benefit we were hoping to achieve with concurrent access.

We have two approaches to alleviate some of that performance overhead
of serial access at the table-level. In one approach we can use a table-level
READ lock type. When a session specifies a table-level READ lock, the ses-
sion specifies that it wishes to only read data in those table(s) and not modify
or delete any of that data. A READ lock type provides two benefits. First, it
also allows other sessions to concurrently hold READ locks for any of those
table(s) and read that data, thus allowing the performance benefits of concur-
rency to be achieved. Second, the READ lock type also specifies that no ses-
sion (not even itself) can modify or delete data in those table(s) while a READ
lock is held. This feature prevents data integrity problems where one session
carries out a series of accesses and expects that certain data is not changed
during that period, whether by itself or other sessions.

For example, suppose in the account transfer scenario a session issues an
audit task across all accounts. During that audit task, data in the account table
should remain constant and not be changed or be deleted. For example, while
the audit task is carried out by one session, we do not want any other session
to have the ability to carry out a transfer task that would change some of the
AccountCC data. However, if a session wants to carry out a balance inquiry
that simply reads an account balance and does not change it, we may want to
allow such concurrent read-only access during the audit period to achieve the
concurrency performance benefit.

Data integrity with concurrent access • 223

To solve this data integrity problem where we want to read AccountCC
data and not have the data change during an audit, the audit session can first
request a table-level READ lock on the AccountCC table. If no WRITE lock
is currently held on the AccountCC table, the DBMS will let the audit session
hold a READ lock on the account table. The audit session may now proceed
with the audit and be assured that the AccountCC table data will not change
while the session holds the READ lock. On the other hand, if a session already
holds a WRITE lock on the AccountCC table when the audit session requests
the READ lock, the DBMS will cause the audit session to wait until the
WRITE lock is released and the table becomes available for the READ lock.

In the second approach to alleviate the performance overhead of serial
access at the table-level, we can instead turn to locking at another level, the
row level.

Row-level locking

While table-level locking can effectively provide mutual-exclusive access to
shared AccountCC table data, we sacrifice the possible benefits with concur-
rent access to that table. However, we can attempt to preserve much of the
performance benefit possible with concurrent access by instead locking on
the row-level. Row-level locking associates a lock with each row in a table, so
to access a particular row, a session must first hold the lock for that row. If a
session needs to access multiple rows as part of a task, the session must first
obtain the locks for each of those rows. When the session finishes accessing
the row(s), the session similarly releases those lock(s).

In the account transfer scenario, each transfer would involve locking two
rows of the AccountCC table, namely the row that corresponds to the account
that sends the transfer and the row that corresponds to the account that
receives the transfer. This approach leaves the remainder of the table (that is,
the unlocked rows) available for concurrent access by other sessions while a
session holds the necessary locks for its two rows.

A session can lock a set of one or more rows in a table by using one of
two row-level locking approaches. The first approach employs a variation of
the SELECT statement to request the row locks, and its syntax is given in
Figure 9.16. Here, the line “{begin transaction}” indicates the starting of a
transaction, either explicitly with a START TRANSACTION statement or
implicitly by setting the autocommit variable to 0 if its value is currently 1.
If the autocommit variable value is already 0, we must issue a COMMIT or

224 • Database security

ROLLBACK as we did before to indicate the beginning of a transaction. Even
though our previous discussion and demonstration of table-level locking did
not involve the use of transactions, in practice we may likely encompass a
table level-locking SQL statement for a task within a transaction along with
the task’s other SQL data access statements.

{begin transaction}

SELECT * FROM table_name WHERE condition FOR lock_type;

statement(s)_to_access_locked_row_set

{end transaction}

FIGURE 9.16 General syntax of first approach to lock a set of rows in a table.

We then start to issue a SELECT statement as if we were simply retrieving
data of the row(s) we wish to lock, as this is a way to identify the row set that is
to be locked. The condition mentioned in the Figure 9.16 syntax defines the
criteria that identifies the row set to lock, such as matching a table identifier
with a certain value or range of values. In this manner, we can lock multiple
rows with a single SELECT statement of this form. Unlike a typical SELECT
statement, we then include at the end of this particular SELECT statement a
FOR clause that defines the type of lock we wish to acquire on that row set.
The two row-level lock types are UPDATE and SHARE, and we will shortly
distinguish between those types and demonstrate their use. We continue with
the statements to access the row set data. When we are finished accessing that
data, we reach the last line with the text “{end transaction}”. Here we issue a
COMMIT or ROLLBACK statement, and it is then we release the locks to the
rows of that row set and conclude the transaction. At that point, those rows
can then be locked again by that session or by other sessions.

UPDATE locks

Back to the row-level lock types. An UPDATE lock type is similar to that of
a table-level WRITE lock, in that only the lock holder may read, modify, or
delete data in the locked row set. The DBMS will make other sessions that
attempt to read, modify, or delete data in that row set to wait until the lock
holding session releases the lock.

As before, for comparison we will again revert the actions of TransferA
and TransferB as shown in Figure 9.11. Figure 9.17 shows the row-level lock-
ing and access statements issued by one session for TransferA. Like before,
we distinguish the two sessions with distinctive prompts.

Data integrity with concurrent access • 225

FIGURE 9.17 Row-level locking and data modifications by the first session for TransferA, which is a
potentially concurrent transfer between A00001 to A00002.

Figure 9.18 shows similar statements issued by a second session for
TransferB.

FIGURE 9.18 Row-level locking and data modifications by the second session for TransferB, which is a
potentially concurrent transfer between A00001 to A00003.

We can also demonstrate a concurrent execution of TransferA and
TransferB by using those two sessions and issuing a few of the statements at
a time for each transfer. Again, for comparison, we will revert the actions of

226 • Database security

TransferA and TransferB as shown in Figure 9.11. Figure 9.19 and Figure 9.20
represent such a possible sequence of statements that can occur in practice.
Figure 9.19 represents the first session carrying out the TransferA statements
and locking its two account rows. For demonstrative purposes, we will not yet
issue the data modification statements of TransferA so that we can simulate
what happens when the second session concurrently attempts to carry out
TransferB.

FIGURE 9.19 Row-level locking by the first session for TransferA of the rows for
accounts A00001 and A00002.

Turning to the second session, as before, consider TransferB issues a
transfer from account A00001 to A00003. Figure 9.20 shows the locking of
that row set, which does not return at this time. Although the row for A00003
is not locked, the row for A00001 is, so the lock request for that entire row
set causes the second session to wait until both rows (that is, all rows in the
set) are available to lock. Thus, the second session is not allowed to carry out
its transfer operations because the first session has exclusive access to one of
those rows that the second session is attempting to lock.

FIGURE 9.20 Row-level locking and wait by the second session for a concurrent transfer between
 accounts A00001 to A00003.

Figure 9.21 shows the first session proceeding with its transfer operations
and issuing a COMMIT to complete its transaction. That effectively unlocks
the first session’s hold on the rows for A00001 and A00002. Notice that if the
first session were to instead issue a ROLLBACK to conclude TransferA, that
would also unlock the first session’s hold on those rows.

Data integrity with concurrent access • 227

FIGURE 9.21 The first session continuing its statements for TransferA and unlocking its row set.

With the row for A00001 now unlocked, the second session will now have
a chance to hold the locks for its row set. If no other sessions are competing
to lock the rows for A00001 or A00003, or if the DBMS chooses the second
session over other competing sessions, the second session’s lock request will
return, as shown in Figure 9.22. The second session now has exclusive access
to the row set for accounts A00001 and A00003 and can proceed to modify
data in those rows and conclude its transaction.

FIGURE 9.22 The second session returning from its lock request for the rows of accounts A00001 and
A00003 and proceeding to access that data.

SHARE locks

In contrast, with a SHARE row-level lock type, a session specifies that it wishes
to only read data in the given row set and will not modify or delete any data in
that row set. The SHARE lock type provides two features. First, it also allows

228 • Database security

other sessions to concurrently read data in any of those rows, thus allowing the
performance benefits of concurrent access to be achieved. As a second feature,
the SHARE lock type also ensures that no other session (or even the session
holding that lock) can modify or delete data in the row set while the SHARE
lock is held. The second feature ensures that all sessions that read data in that
row set will see the same values, thus maintaining data consistency. This second
feature also provides data integrity when a session carries out a task or transac-
tion and requires certain data to remain constant and unchanged (whether by
that session or other sessions) during that transaction period.

For example, suppose in the account transfer scenario a session carries
out a task to audit certain accounts. During the time that session carries out
the audit task, the data for those certain accounts must remain constant and
not change, say by another session’s transfer task that involves one of those
accounts. As such, through the duration of the audit task, every read of a given
piece of data in the rows of the audited accounts (the row set) always yields
the same value. By following the convention that all read-only access involves
a SHARE lock, and any access that involves modifying, creating, or deleting
data involves an UPDATE lock, we can maintain data integrity. If one or more
sessions hold a SHARE lock on a row set, the DBMS will cause other sessions
that request an UPDATE lock to any part of that row set to wait until all of
the SHARE lock holding sessions release their SHARE locks by ending their
transaction with a COMMIT or ROLLBACK statement.

To demonstrate those features of SHARE locks, let’s consider three con-
current sessions. The first session carries out a simple audit of summing the
balances to accounts A00001 and A00002. The second session issues a balance
inquiry of account A00002. The third session issues a transfer task of $1000
from account A00002 to account A00003. Because we are no longer compar-
ing scenarios for TransferA and TransferB, we will not undo the actions of the
previous case. We will also use distinctive prompts to distinguish among the
three concurrent sessions.

Because the first and second sessions involve read-only access for those
tasks, both sessions obtain SHARE locks for the accessed row(s). Figure 9.23
shows the first session carrying a SHARE lock request for accounts A00001
and A00002. Assuming that no locks are held at the time the first session
issues the lock request, the request immediately returns.

Data integrity with concurrent access • 229

FIGURE 9.23 A first session issuing a SHARE lock request for accounts A00001 and A00002.

Now the first session can carry out its audit operations. But before that
happens, let’s issue a concurrent balance inquiry for the second session. As
shown in Figure 9.24, the second session obtains a SHARE lock for account
A00002. Even though another SHARE lock is currently held on a rowset that
includes A00002, this request immediately returns to allow the concurrent
read access. Thus, the second session can proceed to read the account balance
and unlock that row.

FIGURE 9.24 A second session issuing a SHARE lock request for account A00002 to read that balance

and given a lock to proceed with its access.

Now let’s consider the third session, which requests an UPDATE lock for
the rows to accounts A00002 and A00003, as shown in Figure 9.25. Because
A00002 is part of the row set that is currently locked with a SHARE lock by
the first session, the DBMS causes the third session to wait at this time before
it can proceed with its transfer.

230 • Database security

FIGURE 9.25 A third session issuing an UPDATE lock request for accounts A00002 and A00003 and
waiting.

Now suppose the first session continues with its audit and releases its
SHARE locks, as shown in Figure 9.26.

FIGURE 9.26 The first session continuing with its audit operation and releasing its SHARE locks.

With no SHARE or UPDATE locks currently held on the row for accounts
A00002 or A00003, the third session’s UPDATE lock request can now be ful-
filled. Figure 9.27 shows that lock request returning and the transfer task
operations carried out by the third session.

FIGURE 9.27 The third session given its UPDATE lock and can proceed with its transfer.

Data integrity with concurrent access • 231

While row-level locking can greatly improve concurrency among the rows
in a table, notice that a transfer now has to acquire and release two locks (one
for each row), compared to just one lock for the entire table with table-level
locking. With tasks that involve many accounts, that can mean even more locks
involved. That additional locking and releasing increases the mutual exclusion
overhead, which includes both the time taken by the DBMS to manage the
lock and unlock operations as well as the wait time a session endures for a row
to become available when that row is already locked by another session. In
situations where a session locks many rows in the same table, that lock over-
head may exceed any concurrency benefit provided by row-level locking, and
actually yield worse performance compared to table-level locking. As such, in
those situations, table-level locking may yield better performance because of
lower lock overhead, even though there is less concurrent access.

9.3 DEADLOCK

While the use of locks can solve a variety of data integrity problems, the use
of multiple locks (whether table-level or row-level) also introduces the poten-
tial for another security problem that involves the security principle of avail-
ability. This security problem with availability (or more specifically, lack of
availability) is called deadlock. Deadlock can occur when two or more entities
need concurrent access to—and attempt to acquire locks to—the same set of
resources. In general, a resource refers to something (such as a single piece
of data, set of data, hardware device, and so on) that is shared among the
entities. For this discussion, database sessions are the entities that share the
resources, and the resources are individual tables when locking at the table-
level, or row sets when locking at the row-level.

Regardless of the type of resource(s), to maintain data integrity, we associ-
ate a lock with each resource like we did previously to synchronize and coordi-
nate access to that resource. However, the data availability problem or deadlock
becomes possible when two or more entities request the same set of locks, and
at least two entities hold some, but not all, of the locks in that set. Because those
lock-holding entities are each waiting for other lock(s) that are already held
by other entities and hence unavailable, they are unable to proceed with their
resource access and eventually release the locks they do hold. Consequently,
none of those locks become available and those entities wait indefinitely.

232 • Database security

We can illustrate a case of deadlock in a financial transfer scenario
with two transfers: TransferA attempts to transfer from account A00001
to A00002, and TransferB attempts to transfer from account A00002 to
A00001. The amount of each transfer is unimportant in such a deadlock
example, because the deadlock itself is based on the locking of the data
rather than the values of the data. Suppose each transfer attempts to lock
the source account row first, followed by locking the destination account
row. In Figure 9.28, we see a possible sequence of concurrent steps, where
the TransferA session locks its source account row (for A00001) and the
TransferB session locks its source account row (for A00002). Each transfer
now holds the lock for the source account. Now each transfer requests the
lock for the row of their destination account. The TransferA session now
requests the lock for A00002, but because that lock is currently held by
another session, the TransferA session must wait. Likewise, the TransferB
session requests the lock for A00001, but because that lock is currently held
by another session, the TransferB session must wait. Both sessions are now
deadlocked and cannot proceed.

FIGURE 9.28 Example of deadlock with concurrent transfers between A00001 to A00002 and
A00002 to A00001.

A common solution to avoid deadlock is to require that each session
requests all of its necessary locks in a certain sequence. For example, suppose
that rather than have a financial transfer session request its locks by source
AccountID first and destination AccountID second, we instead require a trans-
fer session to request its locks in order of AccountID. Revisiting our deadlock
example, both TransferA and TransferB sessions would initially attempt to
lock account A00001 first, and one transfer will hold the lock and proceed
while the other transfer waits, and because the other transfer waits, it cannot
continue and possibly create a deadlock with the first transfer. Figure 9.29
gives a possible sequence of steps where the TransferA session requests the
lock for A00001 before the TransferB session does so, and the DBMS gives

Data integrity with concurrent access • 233

TransferA the lock to hold. If the TransferB session now requests the lock
for A00001, the TransferB session will wait. TransferA can then proceed to
request the lock for the row to account A00002 without the TransferB ses-
sion interfering and potentially causing a deadlock. If the lock to A00002 is
available, the DBMS will give the TransferA session that lock to hold so that
TransferA can proceed with its transfer operations and release those locks,
thereby making those locks available to other transfer sessions that may be
waiting for them. The TransferB session will then have a chance to hold the
lock for the row to A00001, proceed with its request for the row A0003, and
continue with that transfer.

FIGURE 9.29 Solution to deadlock with concurrent transfers by ordering the sequence of
lock requests.

Notice that if yet another, third, transfer session were to initially hold
the lock for A00002 and cause the TransferA session to wait for that lock,
as long as all transfer sessions request locks in sequence of AccountID, we
are assured that third session will eventually complete its transfer steps and
release the lock for A00002, giving TransferA a chance to hold the lock and
proceed. Looking at that third session more closely, if the third session already
holds both its necessary locks—or holds one lock, requests its second lock and
is given that lock to hold—the third session can freely carry out its transfer
steps and release those locks. The same is true if that third session holds one
lock but waits for another. For example, if the third session holds the lock
for A00002 and requests another lock that a fourth transfer session already
holds, we can repeat this consideration. Eventually, we will reach a transfer
session that can hold all of its necessary locks and not hold one lock and wait
on another, because there is not a lock for a row of a higher AccountID. This
observation is due to the fact that a session which holds a lock can request only
locks with a greater AccountID. In any case, locks will eventually be released
so all transfers, including TransferA, can hold all of their necessary locks and
continue.

234 • Database security

9.4 SUMMARY

In this chapter, we explored risks to data integrity with concurrent access
during backups and other DML statements as an expansion upon previous
chapters. We described and demonstrated solutions to eliminate those risks,
including DBMS locking, table locking and row locking. We elaborated on
read locks and write locks, as well as also described and demonstrated the
concepts of update locks and share locks. In addition, we described synchro-
nization overhead considerations among those solutions. Finally, we explained
the concept of deadlock, its risk to availability, and a solution to prevent that
risk to availability.

APPENDIX

end of ChaPter exerCIses

CHAPTER 1

1. What are the three goals or principles of information security?

2. Which information security principle involves accurate data?

3. Which information security principle involves timely access to data?

4. Which information security principle may involve encryption as a solution?

5. What is a security threat?

6. What is a security control?

7. Is data security the same concept as information security? Explain why or
why not.

8. In general, how does database security differ from that of data security or
information security? You do not have to differentiate among the individual
principles for this answer.

9. Explain the types of integrity involved with database security.

10. What are some of the controls for integrity with database security?

11. Explain the concept of high availability.

236 • Database security

CHAPTER 2

1. Why does the data shown in Figure 2.1 have the potential for data
inconsistencies?

2. In Figure 2.3, we show two examples of data inconsistencies that can occur
with the Figure 2.1 data. Give two other examples of data inconsistencies that
can occur with the Figure 2.1 data.

3. Why is database normalization important?

4. Explain how a functional dependency is different from a table.

5. Suppose we have a table:

Product(ProductId, ProductName, Manufacturer, ManufacturerAddress,
Price, Stock)
with the functional dependencies

ProductId -> (ProductName, Manufacturer, Price, Stock)
Manufacturer -> ManufacturerAddress.

Give an example of a data inconsistency that can occur if Product data is
modified.

6. Using the normalization process to BCNF, explain the process and show the
resulting table(s) for the previous question.

7. Suppose the real estate scenario described in Section 2.1 was slightly altered
such that Phone is no longer unique, and therefore itself cannot be used
to derive anything. In addition, a realtor may have multiple offices, each of
which varies according to a given properties location. Using the normalization
process to BCNF, explain the process and show the resulting table(s) if we
were to start with the data in Figure 2.1 and the table structure

Listing (RealtorName,OfficeAdr,OfficeCity,Phone,PropAdr,PropCity,NBeds,
Area,Price)

and recognize only the following functional dependencies

(RealtorName,PropAdr,PropCity) -> (OfficeAdr,OfficeCity,Phone)
(PropAdr,PropCity) -> (NBeds,Area,Price)

enD of chaPter exercises • 237

CHAPTER 3

1. Which information security principle does backups help address?

2. From a security perspective, explain why backups are an important control.

3. Explain why it may be important to keep multiple backups, each made at a
different point in time, rather than just one backup that has the latest content.

4. What does a database backup that consists of SQL statements contain?

5. Even though the --databases option of mysqldump is not required for a
backup of a single database, we may still want to specify that option for a single
database backup. Explain why.

6. Give the mysqldump command that creates a backup of a database named
"MyDatabase". You may assume a backup administrator account name of
bkpuser with password bkppass.

7. Explain how we can restore from the backup created in question 5, using a
mysql command that creates a client session to the DBMS and then restores
from the backup file.

8. Explain how we can restore from the backup created in question 5, this time by
using a client session that has already been established to the DBMS.

9. Explain how we can create a backup of one database but then restore that backup
into another database, say to make a copy of the database for testing purposes.

10. In this chapter, we touched on some of the database user account controls that
can be employed to support account confidentiality. Explain two other account
controls not presented in this chapter that we may wish to use.

CHAPTER 4

1. Explain the risks associated with a user account that has no password.

2. Are quotes necessary around usernames and hostnames?

238 • Database security

3. What is a host restricted account?

4. Give the SQL statement to create a user named 'guest' with no password.

5. Give the SQL statement to create a user named 'ron' with a password of
'7&55ha'.

6. Give the SQL statement to create a user named 'mike' with a password of
'8$mad3*'.

7. Give the SQL statement to create a user named 'carolyn' with a password of
'plmr@9' and with a host login restriction only from 192.168.2.x, where x is any
number.

8. Give the SQL statement to create a user named 'mary' with a password of
'3hmm4)' and with a host login restriction only from 192.168.2.9.

9. Give the SQL statement to create a user named 'mary' with a password of
'hh78u#' and with a host login restriction only from 192.168.3.1.

10. Give the SQL statement to change the password for the user account 'guest' to
be 'officeguest'.

11. Explain why we may employ different passwords to a user account that has the
ability to log in from multiple hosts or networks.

CHAPTER 5

1. Suppose a financial auditor needs an account to access data in the Business
scenario. Give the SQL statements to create a user account named 'auditor'
with password '@udit98&'.

2. Give user 'auditor' the privileges to only read the data in the Employee table.

3. Give user 'auditor' the privileges to only read the data in the Budget table.

4. Explain whether there are any security concerns with the types of access given
to the financial auditor for those two tables.

5. Now we wish to allow the auditor access to only the EmpID, FName, LName,
Title and Office columns in the Employee table. Explain the two approaches by
which we can enforce that requirement if the auditor account already has read
access to the Employee table.

6. Give the SQL statements that would be involved with your first approach.

7. Give the SQL statements that would be involved with your second approach.

enD of chaPter exercises • 239

8. Give the SQL statement to show the privileges for the auditor with the
requirements given in (5) enacted.

9. Explain the purpose of the GRANT OPTION

10. Suppose we wanted to allow the auditor account to have the ability to modify
or change the financial number data in the Budget table. Give the SQL
statement(s) that would provide the ability.

CHAPTER 6

1. In the Business scenario, we created roles that had no hostname or network
restriction, relying on the usernames to limit access based on the system from
which a user logs in from. Can you identify scenarios where restricting a role to
a particular hostname or network is necessary?

2. Suppose we were to add a financial value-based column named Projection to
the Budget table with similar data access requirements to the Notes column
that we added in Chapter 5. Explain how that may change our role definitions
that were given for the Budget table in Chapter 6.

3. Provide the SQL statements necessary to implement your solution to (2). You
may wish to back up the full DBMS first if you wish to return to the original
role and/or privilege settings.

4. As part of a thorough series of testing the implementation of roles, at the end of
6.5 we give some examples of testing and the expected results. List some other
tests that we could also issue and their expected results.

5. In Section 6.6.2, we handled the employee responsibility additions entirely
with roles. Give the necessary statements if we were to alternatively handle
the change directly with privileges. Use the BusinessCLS database for this
exercise.

6. In Section 6.6.3, we handled the employee responsibility additions entirely
with roles. Give the necessary statements if we were to alternatively handle the
change directly with privileges. Use the BusinessCLS database for this exercise.

CHAPTER 7

1. Give the SQL statement to create a view named PatientNames of the Patient
table that contains only patient FName and LName.

240 • Database security

2. Give the SQL statement to create a view named PatientsFullyVaccinated of the
Patient table that contains only data for patients who have a VaccinationStatus
of 'full'.

3. Give users 'ron', 'mike', and 'carolyn' the ability to read the data in the
PatientsFullyVaccinated view. Other users should not be able to see the data
in that view.

4. Give the SQL statement to create a view named PatientUnder21 of the Patient
table that contains only data for patients under the age of 21.

5. Give the SQL statement to create a view named Patient21OrOver of the Patient
table that contains only data for patients 21 or older.

6. Explain the difference between plaintext and ciphertext.

7. Explain the differences between symmetric and asymmetric key encryption.

8. Give the SQL statement that will encrypt a message of your choosing, with a
key of your choosing.

9. Give the SQL statement that will decrypt the ciphertext generated in the
previous question.

10. How is hashing different from encryption and decryption?

11. How long is an SHA2 hash by default?

12. Why is storing passwords in plaintext a bad idea?

13. Explain how we can use hashing with passwords to confirm when a provided
password matches the previously set password.

14. Why is salting passwords important for security purposes?

15. Give the definition of a stored function named NumUnvaccinated that returns
the number of patients that have a vaccination status of 'none'.

16. Give the definition of a stored function named Num21OrOver that returns the
number of patients that are 21 years of age or older.

17. Give the SQL statement(s) that would allow user 'mary' to invoke the stored
function named PercentByAgeRange.

18. What are the differences between a stored function and stored procedure?

enD of chaPter exercises • 241

CHAPTER 8

1. Explain why database transactions may be important for data integrity.

2. Explain the difference between a COMMIT and ROLLBACK, and what
individual database operations are affected by them.

3. Why must we have automatic commits disabled before we can use a COMMIT
or ROLLBACK with a transaction?

4. Explain the two ways that we implement or begin a transaction.

5. Show a series of SQL statements that carry out a transfer operation on the
Account table that results with valid data and a COMMIT. Show the Account
table before you begin as well as at the end so that we can see a "before"
and "after" set of data. Your statements should be similar to those given
in Figure 8.6 and Figure 8.7 but result with valid data.

6. Show a series of SQL statements that carry out a transfer operation on the
Account table that results with invalid data and a ROLLBACK. Show the
Account table before you begin as well as at the end so that we can see a
"before" and "after" set of data. Your statements should be similar to those given
in Figure 8.6 and Figure 8.7 but result with invalid data.

7. Give an SQL CREATE TABLE statement that creates a table named
ExamGrades to store grades for an exam. The columns for the table are
StudentId (an integer), ExamId (also an integer), and Grade (a double floating
point). Include a condition check that ensures a Grade value is between 0 and
100, inclusive.

8. Show the SQL statement and result (including the contents of the ExamGrades
table) if you were to insert the values (10000, 1, 90.0);

9. Show the SQL statement and result (including the contents of the ExamGrades
table) if you were to insert the values (10001, 1, 200.0);

The next three questions refer to users 'jerrysr', 'etta', 'steve', 'sindy', and 'cus-
tomer'. Create user accounts for those usernames with passwords of your choosing.

10. Give users 'jerrysr' and 'steve' the ability to read, modify, add and delete data in
all the tables of the Ecommerce database.

242 • Database security

11. Give users 'etta' and 'sindy' the ability to read the data in all the tables of the
Ecommerce database.

12. Give user 'customer' the ability to read only the data in the Item table.

13. Consider the implementation of the restaurant's e-commerce system chooses
to store information about a user's selected items in the database itself rather
than on the user's device. How would the purchase transaction differ compared
to that presented in the text?

14. Give an example of calling the AccountTransferIF stored procedure that would
leave a negative balance. Show the account balances before and after calling
AccountTransferIF in this manner.

15. Modify AccountTransferIF to issue ROLLBACK if the transfer amount is not
in a valid range of 0.00 to 999999.99, to accommodate a given requirement that
transfers must be non-negative and less than 1000000.

16. We described in AccountTransferExc how a resulting negative source
account balance can generate an exception that issues ROLLBACK. Can you
think of other criteria or reasons why we would want an exception to issue a
ROLLBACK? Hint: think of the AccountTransferExc arguments.

17. In the stored procedure AccountTransferExcLog, the exception handler issues
a ROLLBACK followed by an INSERT. Must we issue those two statements
in that sequence, or could we issue either one before the other? Explain why
or why not.

18. In the Ecommerce scenario, we demonstrated a use of transactions for INSERT
and UPDATE operations in Figure 8.24 and Figure 8.28. Come up with another
use in the Ecommerce scenario where DELETE operations are involved along
with INSERT or UPDATE operations. Explain what business concept the
transaction handles, and provide the operations in a stored procedure like we
did in Figure 8.24 and Figure 8.28.

19. In Section 8.7, we describe a data integrity concern with two account transfers
involving a transfer from account A00001 to A00002 and another transfer of
A00001 to A00003. Describe a data integrity concern that also involves two
account transfers, but the transfers have the same account as the transfer
recipient rather than the source.

20. Can you think of another data integrity example that involves two account
transfers, but the source accounts of both transfers are different, and the
destination accounts of both transfers are different?

enD of chaPter exercises • 243

CHAPTER 9

1. Explain why concurrent access to the same data presents data integrity concerns
that do not exist with serial access.

2. Why may it be important to first lock database table(s) that we want to backup?

3. Give the SQL statements to lock and backup the Account table of the Financial
database.

4. Figure 9.7 illustrates one possible outcome of concurrent transfers between
accounts A00001 to A00002, and accounts A00001 to A00003. Show another
possible outcome that leaves account A00001 with an inconsistent balance that
compromises data integrity.

5. Explain the difference between a READ and WRITE lock.

6. Suppose no locks are held on a table. Session 1 issues a READ lock on that
table and session 2 later issues a READ lock on the same table while session
1 still holds its READ lock. Explain whether one session waits for the other to
unlock the table, or if something else happens.

7. Suppose no locks are held on a table. If session 1 issues a WRITE lock on that
table and session 2 later issues a READ lock on the same table while session 1
still holds its WRITE lock. Explain whether one session waits for the other to
unlock the table, or if something else happens.

8. Suppose no locks are held on a table. If session 1 issues a WRITE lock on that
table and session 2 later issues a WRITE lock on the same table while session
1 still holds its WRITE lock. Explain whether one session waits for the other to
unlock the table, or if something else happens.

9. Explain a scenario where table-level locking may be more efficient in terms of
runtime performance than row-level locking.

10. Explain a scenario where row-level locking may be more efficient in terms of
runtime performance than table-level locking.

11. Give a possible sequence of lock operations for two transfers, one from account
A00001 to A00002 and the other from account A00002 to A00001, other than
the one shown in Figure 9.28, that results in deadlock.

INDEX

A
All-or-nothing concept, 181
Atomic transaction, 181
Availability, 3

B
Backup and recovery techniques

backup format, 32–33
checkpoints, 32
concurrent access

data integrity problems, 209
DDL statements, 208
DML statements, 208
FLUSH TABLES statement, 209, 210
locking mechanism, 209
UNLOCK TABLES statement, 210–212

considerations, 32
DBMS backup, 39–40
multiple specific databases, 36
mysqldump command, 33
restore points, 32
of a specific database, 33–36
of specific tables, 36–38
user accounts and associated privileges, 38–39

BCNF normalization, 20–21
Boyce-Codd Normal Form (BCNF), 20

C
Candidate key, 20
Collision, 157

Column-level security (CLS)
blanket requirements, 89
column-level privileges, 89

to Budget for read-only access, 95
to Budget for read-write access, 96
for CEO and CFO, 97–98
for human resources personnel, 94
non-human resource personnel, 92

data access requirements
the Budget table columns, 95
to confidential data, 101–104
for the Employee table columns, 91
to read addresses, 100–101
users to read salaries, 99–100

table-level privileges, 92
TLS requirements, 90

COMMIT and ROLLBACK statement
condition issued, 190–192
exception issued, 192–197
transactions

before and after effect, 186
disable automatic commitments, 181–184
e-commerce scenario, 197–206
enable automatic commitments, 182–183
use of, 181

Concurrent access
and backups

data integrity problems, 209
DDL statements, 208
DML statements, 208

246 • Database security

FLUSH TABLES statement, 209, 210
locking mechanism, 209
UNLOCK TABLES statement, 210–212

and DML statements
AccountTransferExcLog, 213–216
data consistency, 213
mutual exclusion technique, 216
row-level locking, 223–231
table-level locking, 217–223
turnaround time, 212–213

Confidentiality, 2

D
Database design

access restrictions and beyond, 27–28
normalization

BCNF normalization, 20–21
data inconsistency, 19–20
functional dependency, 20
real estate agency scenario, 18
Realtor table, 23
relation structure of listing, 18
split tables, 22–23

surrogate keys and data integrity, 24–27
Database management and administration

backup and recovery techniques
backup format, 32–33
checkpoints, 32
considerations, 32
DBMS backup, 39–40
multiple specific databases, 36
mysqldump command, 33
restore points, 32
of a specific database, 33–36
of specific tables, 36–38
user accounts and associated privileges,

38–39
user account security configurations

disabling/enabling, 45–46
password expiration, 41–45

Database privileges
capabilities, 66–67
concept of, 59
default secure, concept of, 61
FLUSH PRIVILEGES statement, 64–65
GRANT statement, 62–63
principle of least privilege, 71
read-only access, 65

REVOKE statement, 70–73
SHOW GRANTS statement, 67–70
SQL privileges, 62
table definitions and table data, 60
TLS and table-level privileges

Budget table, 79–80
Employee table, 76–78
mapping of high-level access, 76
user data access requirements, 73

Database roles
create single and multiple roles, 112
DROP statement, 118
organization, evolution of

adding another role to a user, 133
new employee is hired, 131–133
remove a user, 134–135

with privilege management, 106
privileges

for the AllEmployee role, 117
CEO and CFO roles, 117
for CIO role, 118
column-level privileges, 115–117
HR role, 118
SQL GRANT statement, 113
table-level privileges, 114–115

SQL syntax, 112
TLS and CLS requirements, 107–111
users

adding and removing, 119–121
comprehensive privileges, 121–122,

129–130
default role, 125–127
SET ROLE statement, 122–123
SHOW GRANTS statement, 121–122,

127–129
testing, 123–124

Database security
confidentiality, 7
high availability, 14–15
integrity

domain integrity, 13
entity integrity, 8–9
referential integrity, 9–13
user-defined integrity, 13–14

Database transaction, 181
Database user accounts

create and remove
ALTER USER statement, 50

inDex • 247

CREATE USER statement, 49
DROP statement, 52
usernames and passwords, 48

host-restricted accounts, 54–58
listing of users, 53–54

Database view
accessing the data, 142–144
concept of, 137–139
create

CREATE VIEW statement, 140
syntax, 141

decryption, 155–156
delete and redefine, 148–150
encryption, 154–155
hashing, 156–161
list of views and view definition, 141–142
multiple data access requirements, 150–153
salting, 162–166
security concern, 144–148

Data integrity
concurrent access (see Concurrent access)
deadlock, 231–233
transactions

automatic, 181–183
COMMIT and ROLLBACK (see COMMIT

and ROLLBACK statement)
database accesses or operations, 179–180
START TRANSACTION, 186–189

Data security, 6–7
Deadlock, 231–233
Default secure concept, 61
Denial of Service (DOS) attack, 3
Distributed Denial of Service (DDOS)

attack, 3

I
Information security

availability, 3
confidentiality, 2
controls, 5
definition, 2
integrity, 2–3
internal and external threats, 4
security requirements, 5–6

Integrity, 2–3

N
Normalization, 18–24

BCNF normalization, 20–21

data inconsistency, 19–20
functional dependency, 20
real estate agency scenario, 18
Realtor table, 23
relation structure of listing, 18
split tables, 22–23
table-level security (TLS), 83–88

P
Primary key, 8

R
Rainbow table attacks, 162
Redundant array of independent devices

(RAID), 5
Relational database model, 8–9
Routines, 39
Row-level locking

SHARE lock type, 227–231
UPDATE lock type, 224–227

Row-level security (RLS), 104

S
Secure hash algorithm (SHA), 156–157
SHARE lock type, 227–231
SQL privileges, 62
Stored routines

confidentiality vulnerability, 167
in medical case study, 167–169
password authentication mechanism, 175–176
stored functions, 169–173
stored procedures, 173–174

Surrogate keys, 24–27

T
Table-level security (TLS), 60

and normalization, 83–88
and table-level privileges

Budget table, 79–80
Employee table, 76–78
mapping of high-level access, 76
user data access requirements, 73

U
Uninterruptible power supplies (UPSs), 5
UPDATE lock type, 224–227

	Cover
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	Chapter 1: Introduction to Information Security, Data Security, and Database Security
	1.1 Information Security
	Confidentiality
	Integrity
	Availability

	1.2 Security Threats, Controls, and Requirements
	Security threats
	Security controls
	Security requirements

	1.3 Data Security
	1.4 Database Security
	Data confidentiality
	Data integrity
	Data Availability

	1.5 Summary

	Chapter 2: Database Design
	2.1 Normalization
	2.2 Surrogate Keys and Data Integrity
	2.3 Normalization, Access Restrictions, and Beyond
	2.4 Summary

	Chapter 3: Database Management and Administration
	3.1 Backup and Recovery
	Backup and restore of a specific database
	Backup and restore of multiple specific databases
	Backup and restore of specific tables
	Backup of users, privileges, and other components
	Deciding what to backup

	3.2 User Account Security Configurations
	Password expiration
	Disabling/enabling user accounts

	3.3 Summary

	Chapter 4: Database User Accounts
	4.1. Creating and Removing Database User Accounts
	4.2. Listing User Accounts
	4.3 Host-Restricted Accounts
	4.4 Summary

	Chapter 5: Database Privileges
	5.1 Overview of Privileges and Database-Level Privileges
	5.2 Capability to Manage Privileges
	5.3 Listing Privileges
	5.4 Removing Privileges
	5.5 Working with TLS and Table-Level Privileges
	5.6 TLS and Normalization Revisited
	5.7 Column Level Security (CLS)
	5.8 CLS and Evolving Data Access Requirements and Data
	The capability for CEO and CFO to read salary data
	The capability for employees to see address data
	The capability for executives to keep private notes in the budget table

	5.9 Row Level Security
	5.10 Summary

	Chapter 6: Roles
	6.1 Defining Role Members and Data Access Requirements
	6.2 Creating a Database Role, Showing Role Privileges, and Removing a Role
	6.3 Assigning Privileges to Roles
	6.4 Database Users and Role
	Adding and removing a database user to a role
	Listing, setting, and testing a user's role
	The default role
	Listing privileges and roles revisited

	6.5 Roles and Evolution
	A new employee is hired
	An employee adds a role or moves to another role
	An employee leaves a role or the organization

	6.6 Summary

	Chapter 7: Database Security Controls for Confidentiality
	7.1 Views
	Concept of a view
	Creating a view
	Showing a list of views and a view definition
	Accessing the data of a view
	Security considerations of a view
	Deleting and redefining views
	Views and multiple data access requirements

	7.2 Encryption, Decryption, and Hashing
	Encryption
	Decryption
	Hashing
	Salting

	7.3 Stored Routines
	Stored functions
	Stored procedures
	Revisiting the password authentication implementation

	7.4 Summary

	Chapter 8: Transactions for Data Integrity
	8.1 Commits, Rollbacks, and Automatic Commits
	8.2 Beginning a Transaction with COMMIT or ROLLBACK
	8.3 Beginning a Transaction with START TRANSACTION
	8.4 Condition Issued COMMIT or ROLLBACK
	8.5 Exception Issued ROLLBACK
	8.6 A Larger Demonstration of Transactions
	8.7 Summary

	Chapter 9: Data Integrity with Concurrent Access
	9.1 Concurrent Access and Backups
	9.2 Concurrent Access with DML Statements
	Table-level locking
	Row-level locking
	UPDATE locks
	SHARE locks

	9.3 Deadlock
	9.4 Summary

	Appendix
	Index

